Return to search

Contextuality and noncommutative geometry in quantum mechanics

It is argued that the geometric dual of a noncommutative operator algebra represents a notion of quantum state space which differs from existing notions by representing observables as maps from states to outcomes rather than from states to distributions on outcomes. A program of solving for an explicitly geometric manifestation of quantum state space by adapting the spectral presheaf, a construction meant to analyze contextuality in quantum mechanics, to derive simple reconstructions of noncommutative topological tools from their topological prototypes is presented. We associate to each unital C&ast;-algebra A a geometric object--a diagram of topological spaces representing quotient spaces of the noncommutative space underlying A&mdash;meant to serve the role of a generalized Gel'fand spectrum. After showing that any functor F from compact Hausdorff spaces to a suitable target category C can be applied directly to these geometric objects to automatically yield an extension F<sup>&sim;</sup> which acts on all unital C&ast;-algebras, we compare a novel formulation of the operator K<sub>0</sub> functor to the extension K<sup>&sim;</sup> of the topological K-functor. We then conjecture that the extension of the functor assigning a topological space its topological lattice assigns a unital C&ast;-algebra the topological lattice of its primary ideal spectrum and prove the von Neumann algebraic analogue of this conjecture.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:658528
Date January 2015
Creatorsde Silva, Nadish
ContributorsAbramsky, Samson; Coecke, Bob
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:1ca8995d-b562-426a-ab89-afab3a18dda2

Page generated in 0.0021 seconds