Cette thèse se consacre à l'étude de certaines passerelles existantes entre les probabilités dîtes classiques et la théorie des systèmes quantiques ouverts. Le but de la première partie de ce manuscrit est d'étudier l'émergence de bruits classiques dans l'équation de Langevin quantique. Cette équation sert à modéliser l'action d'un bain quantique sur un petit système dans l'approximation markovienne. L'analogue en temps discret de cette équation est décrit par le schéma des interactions quantiques répétées étudier par Stéphane Attal et Yan Pautrat. Dans des travaux antérieurs, Attal et ses collaborateurs montrent que les bruits classiques naturels apparaissant dans ce cadre sont les variables aléatoires obtuses, dont ils étudient la structure. Mais sont-ils les seuls bruits classiques pouvant émerger, et quand est-il dans le cas général ? De même, en temps continu, il était plus ou moins admis que les seuls bruits classiques apparaissant dans l'équation de Langevin quantique sont les processus de Poisson et le mouvement brownien. Ma contribution dans ce manuscrit consiste à définir une algèbre de von Neumann pertinente sur l'environnement, dite algèbre du bruit, qui encode la structure du bruit. Elle est commutative si et seulement si le bruit est classique ; dans ce cas on confirme les hypothèses précédentes sur sa nature. Dans le cas général, elle permet de montrer une décomposition de l'environnement entre une partie classique maximale et une partie purement quantique. Dans la deuxième partie, nous nous consacrons à l'étude de processus stochastiques classiques apparaissant au sein du système. La dynamique du système est quantique, mais il existe une observable dont l'évolution est classique. Cela se fait naturellement lorsque le semi-groupe de Markov quantique laisse invariante une sous-algèbre de von Neumann commutative et maximale. Nous développons une méthode pour générer de tels semi-groupes, en nous appuyons sur une définition de Stéphane Attal de certaines dilatations d'opérateurs de Markov classiques. Nous montrons ainsi que les processus de Lévy sur Rn admettent des extensions quantiques. Nous étudions ensuite une classe de processus classiques liés aux marches quantiques ouvertes. De tels processus apparaissent lorsque cette fois l'algèbre invariante est le produit tensoriel de deux algèbres, l'une non-commutative et l'autre commutative. Par conséquent, bien que comportant l'aspect trajectoriel propre au processus classiques, de telles marches aléatoires sont hautement quantiques. Nous présentons dans ce cadre une approche variationnelle du problème de Dirichlet. Finalement, la dernière partie est dédiée à l'étude d'un processus physique appelé décohérence induite par l'environnement. Cette notion est fondamentale, puisqu'elle apporte une explication dynamique à l'absence, dans notre vie de tous les jours, de phénomènes quantiques. Nous montrons qu'une telle décohérence a toujours lieu pour des systèmes ouverts décrits par des algèbres de von Neumann finies. Nous initions ensuite une étude innovante sur la vitesse de décohérence, basée sur des inégalités fonctionnelles non-commutatives, qui permet de mettre en avant le rôle de l'intrication quantique dans la décohérence / This thesis focus on the study of several bridges that exist between classical probabilities and open quantum systems theory. In the first part of the thesis, we consider open quantum systems with classical environment. Thus the environment acts as a classical noise so that the evolution of the system results in a mixing of unitary dynamics. My work consisted in defining a relevant von Neumann algebra on the environment which, in this situation, is commutative. In the general case, we show that this algebra leads to a decomposition of the environment between a classical and a quantum part. In the second part, we forget for a time the environment in order to focus on the emergence of classical stochastic processes inside the system. This situation appears when the quantum Markov semigroup leaves an invariant commutative maximal von Neumann algebra. First, we develop a recipe in order to generate such semigroup, which emphasizes the role of a certain kind of classical dilation. We apply the recipe to prove the existence of a quantum extension for L\'evy processes. Then in the same part of the thesis we study a special kind of classical dynamics that can emerge on a bipartite quantum system, call \emph. Such walks are stochastic but displayed strong quantum behavior. We define a Dirichlet problem associated to these walks and solve it using a variational approch and non-commutative Dirichlet forms. Finally, the last part is dedicated to the study of Environment Induced Decoherence for quantum Markov semigroup on finite von Neumann algebra. We prove that such decoherence always occurs when the semigroup has a faithful invariant state. Then we focus on the fundamental problem of estimating the time of the process. To this end we define adapted non-commutative functional inequalities. The central interest of these definitions is to take into account entanglement effects, which are expected to lower the speed of decoherence
Identifer | oai:union.ndltd.org:theses.fr/2016LYSE1071 |
Date | 07 June 2016 |
Creators | Bardet, Ivan |
Contributors | Lyon, Attal, Stéphane |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds