Return to search

Actions of Finite Groups on Substitution Tilings and Their Associated C*-algebras

The goal of this thesis is to examine the actions of finite symmetry groups on aperiodic tilings. To an aperiodic tiling with finite local complexity arising from a primitive substitution rule one can associate a metric space, transformation groupoids, and C*-algebras. Finite symmetry groups of the tiling act on each of these objects and we investigate appropriate constructions on each, namely the orbit space, semidirect product groupoids, and crossed product C*-algebras respectively. Of particular interest are the crossed product C*-algebras; we derive important structure results about them and compute their K-theory.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU./en#10393/20663
Date01 February 2012
CreatorsStarling, Charles B
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThèse / Thesis

Page generated in 0.0024 seconds