Return to search

Investigating Spring Dead Spot Management via Aerial Mapping and Precision-Guided Inputs

Spring dead spot (SDS) is the most destructive disease of bermudagrass (Cynodon spp.) in Virginia. SDS infects bermudagrass in the fall with symptoms appearing in the spring when dormancy breaks. Patches are sporadically distributed but generally reoccur in the same location. Chemical control options are expensive with inconsistent results. Our objectives were to develop SDS incidence maps, investigate methods to analyze these maps, and evaluate suppression efficacy of incidence-map-based chemical applications. Methods were developed to build SDS incidence maps in 2016 and 2017. 2016 SDS incidence maps were compared for spatial accuracy to Digital Orthophoto Quarter Quadrangle (DOQQ), ground-validated differential GPS coordinates, and to 2017 SDS incidence maps, with average deviations of 1.3 m, 1.6 m, and 0.1 m, respectively. Digital Image Analysis (DIA) of aerial maps was compared to a point-intersect method for validation with a significant linear relationship (r2 = 0.77, P ≤ 0.0001). In the fall of 2016 and 2017, a site-specific penthiopyrad (SSP) treatment was evaluated against blanket, full-coverage applications of penthiopyrad (BP) and tebuconazole (BT), and an untreated control. Treatments were compared using DIA, post-treatment SDS patch count (PC), and SDS patch reduction (PR). Across all three metrics, the penthiopyrad treatments were statistically superior to both the tebuconazole and untreated. SSP compared favorably to BP for DIA, but BP had 2.57 fewer PC (LSD = 2.05) and a greater PR by 2.58 (LSD = 2.55). SSP using SDS incidence maps required 51% less fungicides in 2016 and 65% less in 2017 when compared to BP. / Master of Science in Life Sciences

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/83499
Date08 June 2018
CreatorsBooth, Jordan Christopher
ContributorsPlant Pathology, Physiology, and Weed Science, McCall, David S., Askew, Shawn D., Baudoin, Antonius B., Goatley, James Michael
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0023 seconds