Return to search

Opportunistic large array concentric routing algorithm (OLACRA) for upstream routing in wireless sensor networks

An opportunistic large array (OLA) is a form of cooperative diversity in which a large group of simple, inexpensive relays or forwarding nodes operate without any mutual coordination, but naturally fire together in response to energy received from a single source or another OLA. When used for broadcast, OLAs form concentric rings around the source, and have been shown to use less energy than conventional multi-hop protocols. This simple broadcasting scheme, which is already known, is called Basic OLA. The OLA Concentric Routing Algorithm (OLACRA), which is our contribution, takes advantage of the concentric ring structure of broadcast OLAs to limit flooding on the upstream connection. By limiting the node participation, OLACRA saves over 80% of the energy compared to Basic OLA, without requiring GPS, individual node addressing, or inter-node interaction. This thesis analyzes the performance of OLACRA over 'deterministic channels' where transmissions are on non-faded orthogonal channels and on 'diversity channels' where transmissions are on Rayleigh flat fading limited orthogonal channels. The performance of diversity channels is shown to approach the deterministic channel at moderate orders of diversity. Enhancements to OLACRA to further improve its efficiency by flooding in the initial upstream level and limiting the downlink 'step sizes' are also considered. The protocols are tested using Monte Carlo evaluation.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/26672
Date19 November 2008
CreatorsThanayankizil, Lakshmi V.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds