Return to search

Příprava a charakterizace plazmatem aktivované vody pro využití v bioaplikacích / Preparation and characterization of plasma activated water for bio applications

The aim of this master thesis is the preparation and characterization of plasma activated water (PAW) prepared by dielectric barrier discharge at atmospheric pressure in air for the future applications in agriculture and medicine. The theoretical part is focused on plasma activated water and its effects on seeds and plants. The work also deals with the preparation and application of PAW in the world. Various types of plasma discharge configurations suitable for its preparation are described here. In the experimental part of the master thesis, distilled and tap water were chosen for activation. The concentrations of active particles in PAW generated by DBD such as nitrites, nitrates and hydrogen peroxide were determined. The value of the concentration of active particles changes probably due to mutual interactions when nitrites are oxidized by hydrogen peroxide to nitrates. Physical properties of PAW such as conductivity and pH were also characterized. After the preparation of PAW, the conductivity increases due to the increase in the concentration of active particles formed by dissociation and ionization of water molecules by plasma. The particles presented in the air, which are dissociated and ionized by plasma, also diffuse into the liquid, and contribute to this increase. The decrease in pH also corresponds to an increase in the concentration of hydrogen ions and the formation of nitric acids. Another aspect of this work was to study plasma activated water during the first eight hours after its preparation and to determine its properties. We have found that PAW prepared from tap water retains its characteristic properties for at least 8 hours and distilled water for 6 hours. In the master thesis, the analysis of plasma discharge was performed using optical emission spectroscopy. OES measurements were performed in the wavelength range 300 to 800 nm. The second positive nitrogen system (N2 (C 3u) N2 (B 3g)) and the first positive nitrogen system (N2 (B 3g) N2 (A 3+u)) were identified in the overview spectrum. Molecular nitrogen ions, OH· radicals, atomic oxygen and atomic hydrogen can be observed in the spectrum, too. The dielectric barrier discharge was also captured using a high-speed camera, and the recording shows the occurrence of multiple discharges that are spatially as well as temporary unstable.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:414165
Date January 2020
CreatorsLemonová, Hana
ContributorsMatěj,, Klas, Krčma, František
PublisherVysoké učení technické v Brně. Fakulta chemická
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.002 seconds