Return to search

Experimental study of photosensitivity of optical fibre

M.Ing. / Bragg gratings exist due to permanent changes in the refractive index introduced in the fibre through exposure to ultraviolet radiation. Standard telecommunications fibre (SMF-28) is only slightly photosensitive at 248 nm irradiation. A comparative study of different photosensitization techniques is undertaken on the basis of the desired photosensitivity characteristics and efficiency of the technique used. The analytical method is used to determine valuable properties of fibre Bragg gratings. The bandwidth and maximum reflectivity of the fibre Bragg grating is dependant on the change of refractive index and is determined analytically. Obtaining very high reflectivity and bandwidth (~lnm) can only be achieved with highly photosensitive optical fibre where refractive index changes of~ 1 o-3 are possible. The change of the refractive index in the optical fibre is related to the phase change by: A new interferometric measurement technique based on this assumption allows the direct measurement of photosensitivity. This technique is modelled with a modified Layer Peeling algorithm. Standard telecommunications fibre was exposed to high-pressure (26B - 160B) hydrogen for several days. This increased the photosensitivity of the optical fibre significantly. The photosensitivity of the fibre is directly dependent on the hydrogen concentration inside the fibre. Refractive index changes, M ~ 1.3x10-3 were achieved in germanium doped fibre and M ~ 5x10-3 in germanium/boron codoped fibre. The knowledge of the hydrogen concentration inside the fibre is important in studying photosensitivity, transmission losses and the wavelength drift after Bragg grating manufacturing. The diffusion proceeds interstitially with no significant chemical interaction. A hydrogen diffusion model was developed based on the transfer of heat between two objects. Although the photosensitivity phenomenon was discovered in optical fibre more than 20 years ago, no complete physical explanation exist for it at present. We agree that stress relaxation and/or compaction are the main reasons for photosensitivity in optical fibre but also that it is still a complex and multifaceted phenomenon. A study of the thermal decay of fibre Bragg gratings suggests that fibre Bragg gratings written in hydrogen loaded fibre is less thermally stable than gratings written in germanium doped fibre. The analysis of accelerated ageing will predict the thermal stability of the Bragg grating over time.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:2024
Date06 February 2012
CreatorsJoubert, Wietz Louwrens
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis

Page generated in 0.005 seconds