Return to search

Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices

Optical fiber technology continues to advance rapidly as a result of the increasing demands on communication systems and the expanding use of fiber-based sensing. New optical fiber types and fiber-based communications components are required to permit higher data rates, an increased number of channels, and more flexible installation requirements. Fiber-based sensors are continually being developed for a broad range of sensing applications, including environmental, medical, structural, industrial, and military.

As optical fibers and fiber-based devices continue to advance, the need to understand their fundamental physical properties increases. The residual-stress distribution (RSD) and the refractive-index distribution (RID) play fundamental roles in the operation and performance of optical fibers. Custom RIDs are used to tailor the transmission properties of fibers used for long-distance transmission and to enable fiber-based devices such as long-period fiber gratings (LPFGs). The introduction and modification of RSDs enable specialty fibers, such as polarization-maintaining fiber, and contribute to the operation of fiber-based devices. Furthermore, the RSD and the RID are inherently linked through the photoelastic effect. Therefore, both the RSD and the RID need to be characterized because these fundamental properties are coupled and affect the fabrication, operation, and performance of fibers and fiber-based devices.

To characterize effectively the physical properties of optical fibers, the RSD and the RID must be measured without perturbing or destroying the optical fiber. Furthermore, the techniques used must not be limited in detecting small variations and asymmetries in all directions through the fiber. Finally, the RSD and the RID must be characterized concurrently without moving the fiber to enable the analysis of the relationship between the RSD and the RID. Although many techniques exist for characterizing the residual stress and the refractive index in optical fibers, there is no existing methodology that meets all of these requirements. Therefore, the primary objective of the research presented in this thesis was to provide a methodology that is capable of characterizing concurrently the three-dimensional RSD and RID in optical fibers and fiber-based devices. This research represents a detailed study of the requirements for characterizing optical fibers and how these requirements are met through appropriate data analysis and experimental apparatus design and implementation.

To validate the developed methodology, the secondary objective of this research was to characterize both unperturbed and modified optical fibers. The RSD and the RID were measured in a standard telecommunications-grade optical fiber, Corning SMF-28. The effects of cleaving this fiber were also analyzed and the longitudinal variations that result from cleaving were explored for the first time. The fabrication of carbon-dioxide-laser-induced LPFGs was also examined. These devices provide many of the functionalities required for fiber-based communications components as well as fiber-based sensors, and they offer relaxed fabrication requirements when compared to LPFGs fabricated by other methods.

The developed methodology was used to perform the first measurements of the changes that occur in the RSD and the RID during LPFG fabrication. The analysis of these measurements ties together many of the existing theories of carbon-dioxide-laser-induced LPFG fabrication to present a more coherent understanding of the processes that occur. In addition, new evidence provides detailed information on the functional form of the RSD and the RID in LPFGs. This information is crucial for the modeling of LPFG behavior, for the design of LPFGs for specific applications, for the tailoring of fabrication parameters to meet design requirements, and for understanding the limitations of LPFG fabrication in commercial optical fibers. Future areas of research concerning the improvement of the developed methodology, the need to characterize other fibers and fiber-based devices, and the characterization of carbon-dioxide-laser-induced LPFGs are identified and discussed.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/42926
Date14 November 2011
CreatorsHutsel, Michael R.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.002 seconds