Return to search

South African sign language recognition using feature vectors and Hidden Markov Models

Masters of Science / This thesis presents a system for performing whole gesture recognition for South African Sign Language. The system uses feature vectors combined with Hidden Markov models. In order to constuct a feature vector, dynamic segmentation must occur to extract the signer's hand movements. Techniques and methods for normalising variations that occur when recording a signer performing a gesture, are investigated. The system has a classification rate of 69%. / South Africa

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uwc/oai:etd.uwc.ac.za:11394/2527
Date January 2010
CreatorsNaidoo, Nathan Lyle
ContributorsConnan, James, Dept. of Computer Science, Faculty of Science
PublisherUniversity of the Western Cape
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
RightsUniversity of the Western Cape

Page generated in 0.0019 seconds