Water stored in snow is a critical contribution to the world’s available freshwater supply and is fundamental to the sustenance of natural ecosystems, agriculture and human societies. The importance of snow for the natural environment and for many socio-economic sectors in several mid‐ to high‐latitude mountain regions around the world, leads scientists to continuously develop new approaches to monitor and study snow and its properties. The need to develop new monitoring methods arises from the limitations of in situ measurements, which are pointwise, only possible in accessible and safe locations and do not allow for a continuous monitoring of the evolution of the snowpack and its characteristics. These limitations have been overcome by the increasingly used methods of remote monitoring with space-borne sensors that allow monitoring the wide spatial and temporal variability of the snowpack. Snow models, based on modeling the physical processes that occur in the snowpack, are an alternative to remote sensing for studying snow characteristics. However, from literature it is evident that both remote sensing and snow models suffer from limitations as well as have significant strengths that it would be worth jointly exploiting to achieve improved snow products. Accordingly, the main objective of this thesis is the development of novel methods for the estimation of snow parameters by exploiting the different properties of remote sensing and snow model data. In particular, the following specific novel contributions are presented in this thesis: i. A novel data fusion technique for improving the snow cover mapping. The proposed method is based on the exploitation of the snow cover maps derived from the AMUNDSEN snow model and the MODIS product together with their quality layer in a decision level fusion approach by mean of a machine learning technique, namely the Support Vector Machine (SVM). ii. A new approach has been developed for improving the snow water equivalent (SWE) product obtained from AMUNDSEN model simulations. The proposed method exploits some auxiliary information from optical remote sensing and from topographic characteristics of the study area in a new approach that differs from the classical data assimilation approaches and is based on the estimation of AMUNDSEN error with respect to the ground data through a k-NN algorithm. The new product has been validated with ground measurement data and by a comparison with MODIS snow cover maps. In a second step, the contribution of information derived from X-band SAR imagery acquired by COSMO-SkyMed constellation has been evaluated, by exploiting simulations from a theoretical model to enlarge the dataset.
Identifer | oai:union.ndltd.org:unitn.it/oai:iris.unitn.it:11572/245392 |
Date | 26 November 2019 |
Creators | De Gregorio, Ludovica |
Contributors | co-supervisor: C. Notarnicola, De Gregorio, Ludovica, Bruzzone, Lorenzo |
Publisher | Università degli studi di Trento, place:Trento |
Source Sets | Università di Trento |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/openAccess |
Relation | firstpage:1, lastpage:121, numberofpages:121, alleditors:co-supervisor: C. Notarnicola |
Page generated in 0.0021 seconds