Return to search

Development of optical sources for optical coherence tomography

The development of two different classes of optical sources for TD-OCT and FD-OCT are presented in this thesis. The design of several low-cost, high-performance BBSs, based on the ASE of two SOAs and EDF, are presented. Two different configuration types that were designed in this thesis are found to be effective BBSs. These sources are implemented in a TD-OCT system and therefore imaging performance is discussed as well. Secondly, two different WSSs based on mode-locked SFRLs with applications in SS-OCT are presented. / From our experimental results with BBSs, we conclude that: (1) S/C-band output produced by the ASE emitted from two cascaded SOAs can be effectively extended with L-band output produced from the ASE of EDF; (2) An even broader output is achievable by: coupling the C-band and L-band outputs from a C-band SOA and EDF respectively and then amplifying the coupled output through an S-band SOA; (3) OCT imaging systems employing a light source with an S+C+L band output, with a center wavelength of approximately 1520 nm, can achieve high penetration depths in biological tissue. / From our experimental results with SFRLs, we conclude that: (1) Our two SFRL configurations generate picosecond pulses with reasonably narrow linewidths: 0.2--0.5 nm, and a sweeping range of about 50 nm; (2) These SFRLs can function as laser swept sources by setting the driving frequency of the RF generator to a periodic ramping function.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.112557
Date January 2007
CreatorsBeitel, David.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Electrical and Computer Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002712556, proquestno: AAIMR51447, Theses scanned by UMI/ProQuest.

Page generated in 0.0018 seconds