A model is developed for the optimization. The model can be used for the merger of both identical and non-identical networks. The overall costs for various topologies are optimized with respect to different interconnection build costs. It is shown that the merger of two optical networks can reduce more than 50% of operational fiber links, while routing between any two nodes in the two optical networks are maintained. This has been proven through case analysis and analytical results. / An algorithm for resource optimization is also developed for the consolidation of two coexisting networks. In all cases after critical interconnection build cost, only two interconnection fiber links are needed. It is shown that the optimization is to find a Hamiltonian path that covers all the nodes in each network or to find a path that contains a maximum number of directly connected articulation nodes with different groupings. / Case analysis results for part of a real China network and other topologies are discussed. Analytical results can be derived for both the minimum number of links required for arbitrary connected networks and the locations of the two interconnections for the merger of two networks. In addition, more comprehensive analysis on the effects of node degree, protection, and traffic demand are discussed. It is conclusive that through the merger of two optical networks substantial saving to the network operator will occur. / In this thesis, the merger of two networks by adding interconnection fiber links is investigated. Interconnection fiber links are only allowed at the co-located nodes of the two networks. With the additional interconnection links, it is possible to reduce the number of fiber links that are operational while maintaining the full connectivity between any two nodes in the two networks. By suspending some of the fiber links, the operational expenses of those links can be saved. Optimal cost and the number of interconnection links with their optimal locations for the merger of the two optical networks are investigated. / Telecommunication networks have been designed to carry voice traffic for decades. With the growth of data traffic in recent years, network operators have constructed substantial amount of fiber optic networks. Multiple telecommunication networks create redundancy in fiber resources. Resources have not been used optimally and revenue has plunged to its lowest since inception. Many network operators are considering co-location and merging in order to reduce cost. Merging two networks can achieve operational savings in redundant fiber links and therefore cost saving to the network operator. / The proposed model finds the optimal interconnection locations for different topologies. We analyzed the optimal location for several cases when the number of interconnection fiber links is two and some analytical results are derived. This assists network planners to focus on the optimal locations for interconnection links to be installed. / Leung, Raymond Hai Ming. / Adviser: Lian Kuan Chen. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3690. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 112-115). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344295 |
Date | January 2008 |
Contributors | Leung, Raymond Hai Ming., Chinese University of Hong Kong Graduate School. Division of Information Engineering. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, theses |
Format | electronic resource, microform, microfiche, 1 online resource (xv, 116 leaves : ill.) |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0022 seconds