Return to search

Non-local active contours

This thesis deals with image segmentation problems that arise in various computer vision related fields such as medical imaging, satellite imaging, video surveillance, recognition and robotic vision. More specifically, this thesis deals with a special class of image segmentation technique called Snakes or Active Contour Models. In active contour models, image segmentation is posed as an energy minimization problem, where an objective energy function (based on certain image related features) is defined on the segmenting curve (contour). Typically, a gradient descent energy minimization approach is used to drive the initial contour towards a minimum for the defined energy. The drawback associated with this approach is that the contour has a tendency to get stuck at undesired local minima caused by subtle and undesired image features/edges. Thus, active contour based curve evolution approaches are very sensitive to initialization and noise.

The central theme of this thesis is to develop techniques that can make active contour models robust against certain classes of local minima by incorporating global information in energy minimization. These techniques lead to energy minimization with global considerations; we call these models -- 'Non-local active contours'. In this thesis, we consider three widely used active contour models: 1) Edge- and region-based segmentation model, 2) Prior shape knowledge based segmentation model, and 3) Motion segmentation model. We analyze the traditional techniques used for these models and establish the need for robust models that avoid local minima. We address the local minima problem for each model by adding global image considerations.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/44739
Date17 May 2012
CreatorsAppia, Vikram VijayanBabu
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0022 seconds