Return to search

Interfacial Interactions Between Carbon Nanoparticles and Conjugated Polymers

Conjugated polymer based electronics, a type of flexible electronic devices, can be produced from solution by traditional printing and coating processes in a roll-to-roll format such as papers and graphic films. This shows great promise for the emerging energy generation and conversion. The device performance of polymer electronics is largely dependent of crystalline structures and morphology of photoactive layers. However, the solution crystallization kinetics of conjugated polymers in the presence of electron acceptor nanoparticles has not been fully understood yet. In this study, solution crystallization kinetics of poly (3-hexylthiophene) in the presence of carbon nanotubes and graphene oxide has been investigated by using UV-visible absorption spectroscopy and transmission electron microscope. Various kinetics parameters such as crystallization temperature, polymer solution concentration and nanoparticle loading will be discussed. The crystallization rate law and fold surface free energy will be addressed by using polymer crystallization theory of heterogeneous nucleation. This fundamental study will provide a foundation of fabricating high efficiency polymer based electronics.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2396
Date01 August 2014
CreatorsLuo, Yanqi
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0019 seconds