Return to search

Laser Gyroscope based on Synchronously Pumped Bidirectional Fiber Optical Parametric Oscillator

This master thesis presents an experimental design of a laser gyroscope based on a stabilized fiber optical parametric oscillator frequency comb and the results of testing of the proposed design. Before going into the experimental details, a background for different types of gyroscopes is discussed. This new laser gyroscope design is made up of only polarization maintaining (PM) fiber and PM fiber components. By using only fiber and fiber components, we were able to minimize size, weight, and alignment issues that are typical in bulk optical designs for OPO's and gyroscopes.
The fiber-based OPO produces counter propagating ultrafast pulses that overlap only twice in the cavity, resulting in a beatnote signal when combined outside of the laser cavity. A mode-locked laser is used as a pump source so the lock-in effect (or deadband region) is avoided for the experiment. The drift of this beatnote signal represents the rotation sensitivity of the experimental setup. Issues seen in past iterations, such as stability of mode-locked pump source and beatnote drift overtime due to environmental variables, have been reduced in this experiment. This has been done by comprising the entire pump source of PM components, and by placing the entire setup in an insulating box to minimize acoustic and temperature fluctuations. By creating a frequency comb and locking the laser gyroscope to an optical clock, this experiment can be used for very precise rotation sensing in comparison to other gyro designs currently available.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/625701
Date January 2017
CreatorsNoble, Jeffrey Scott, Noble, Jeffrey Scott
ContributorsKieu, Khanh, Kieu, Khanh, Norwood, Robert, Cvijetic, Milorad
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Thesis
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0037 seconds