Return to search

Attosecond Transient Absorption Spectroscopy of Atoms and Molecules

One of the most fundamental goals of attosecond science is to observe and to control the dynamic evolutions of electrons in matter. The attosecond transient absorption spectroscopy is a powerful tool to utilize attosecond pulse to measure electron dynamics in quantum systems directly. In this work, isolated single attosecond pulses are used to probe electron dynamics in atoms and to study dynamics in hydrogen molecules using the attosecond transient absorption spectroscopy technique. The target atom/molecule is first pumped to excited states and then probed by a subsequent attosecond extreme ultraviolet (XUV) pulse or by a near infrared (NIR) laser pulse. By measuring the absorbed attosecond XUV pulse spectrum, the ultrafast electron correlation dynamics can be studied in real time. The quantum processes that can be studied using the attosecond transient absorption spectroscopy include the AC stark shift, multi-photon absorption, intermediate states of atoms, autoionizing states, and transitions of vibrational states in molecules. In all experiments, the absorption changes as a function of the time delay between the attosecond XUV probe pulse and the dressing NIR laser pulse, on a time scale of sub-cycle laser period, which reveals attosecond electron dynamics. These experiments demonstrate that the attosecond transient absorption spectroscopy can be performed to study and control electronic and nuclear dynamics in quantum systems with high temporal and spectral resolution, and it opens door for the study of electron dynamics in large molecules and other more complex systems.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-6151
Date01 January 2015
CreatorsCheng, Yan
PublisherUniversity of Central Florida
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0018 seconds