This thesis investigates the electrochromic NixW1-x oxide thin film system, where 0 < x < 1. The thin films were deposited by reactive DC magnetron co-sputtering from one Ni and one W metal target. In addition, Ni oxide was deposited with water vapor added to the sputtering gas. The different compositions were structurally characterized by X-ray diffraction, X-ray photoelectron-, Rutherford backscattering- and Raman spectroscopy. Possible nanostructures were studied by ellipsometry together with effective medium theory. Optical and electrochemical properties were investigated by spectrophotometry and cyclic voltammetry in 1 M lithium perchlorate in propylene carbonate (Li-PC). Li-PC electrolyte was used as it is being compatible with both W and Ni oxides. Few studies have previously been made on Ni oxides in Li-PC. Films with high Ni content, 0.85 < x < 1, were polycrystalline and all other films were amorphous. W-rich films, x < 0.5, consisted of a mixture of W oxide and NiWO4 -phases, and the Ni-rich samples, x > 0.5, probably consisted of hydrated Ni oxide and NiWO4 -phases. Films with 0 < x < 0.3 showed electrochromic properties similar to W oxide, and films with 0.7 < x < 1 behaved as Ni oxide. For 0.4 < x < 0.7 no optical change was seen. At the border of cathodic electrochromic and non-electrochromic behavior, i.e. x ~ 0.4, the sample behaved as an optically passive intercalation material. The transmittance change was 0.45 and 0.15 for the W-rich and Ni-rich films, respectively. Ni addition to W oxide improved the coloration efficiency. For the Ni-rich films the charge insertion/extraction and optical modulation was low and an aging effect resulted in strong bleaching of the samples. The advantage of W addition to Ni oxide was that the transparency at the bleached state was enhanced. Moreover, it was found that the hydrous character of the Ni oxide had a large impact on the electrochromic performance, both when electrochemically cycled in KOH and in the non-aqueous Li-PC.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-179764 |
Date | January 2012 |
Creators | Green, Sara |
Publisher | Uppsala universitet, Fasta tillståndets fysik, Uppsala |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 963 |
Page generated in 0.0019 seconds