<p>This dissertation describes three computational sensors. The first sensor is a scanning multi-spectral aperture-coded microscope containing a coded aperture spectrometer that is vertically scanned through a microscope intermediate image plane. The spectrometer aperture-code spatially encodes the object spectral data and nonnegative</p>
<p>least squares inversion combined with a series of reconfigured two-dimensional (2D spatial-spectral) scanned measurements enables three-dimensional (3D) (x, y, λ) object estimation. The second sensor is a coded aperture snapshot spectral imager that employs a compressive optical architecture to record a spectrally filtered projection</p>
<p>of a 3D object data cube onto a 2D detector array. Two nonlinear and adapted TV-minimization schemes are presented for 3D (x,y,λ) object estimation from a 2D compressed snapshot. Both sensors are interfaced to laboratory-grade microscopes and</p>
<p>applied to fluorescence microscopy. The third sensor is a millimeter-wave holographic imaging system that is used to study the impact of 2D compressive measurement on 3D (x,y,z) data estimation. Holography is a natural compressive encoder since a 3D</p>
<p>parabolic slice of the object band volume is recorded onto a 2D planar surface. An adapted nonlinear TV-minimization algorithm is used for 3D tomographic estimation from a 2D and a sparse 2D hologram composite. This strategy aims to reduce scan time costs associated with millimeter-wave image acquisition using a single pixel receiver.</p> / Dissertation
Identifer | oai:union.ndltd.org:DUKE/oai:dukespace.lib.duke.edu:10161/2406 |
Date | January 2010 |
Creators | Fernandez, Christy Ann |
Contributors | Brady, David J |
Source Sets | Duke University |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | 7241173 bytes, application/pdf |
Page generated in 0.0098 seconds