Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very dicult for a human op- erator to eectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identication at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the eective use of more advanced technolo- gies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identication. Before an object can be tracked, it must be detected. Motion segmentation tech- niques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erro- neous motion caused by noise and lighting eects, or due to the detection routines being unable to split occluded regions into their component objects. Particle l- ters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (of- ten manual) detection to initialise the lter. Particle lters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle lter. A novel hybrid motion segmentation / optical
ow algorithm, capable of simulta- neously extracting multiple layers of foreground and optical
ow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical
ow is capable of extracting a mov- ing object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and signi- cant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle lter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benet from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle lter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking sys- tems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classication in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a signicant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi- automated video processing and therefore improve security in areas under surveil- lance.
Identifer | oai:union.ndltd.org:ADTP/265927 |
Date | January 2009 |
Creators | Denman, Simon Paul |
Publisher | Queensland University of Technology |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Page generated in 0.0023 seconds