To study propagation in bent waveguides numerically the most common technique used is the Beam Propagation Method (BPM), with either the split-step procedure and Fast Fourier Transform algorithm, or a finite difference approach. Most versions are based on a first order modification of the permittivity profile for scalar or full vector wave equations. Others are based on a longitudinally variant index profile and wide angle beam propagation techniques. New device applications are well beyond the limitations of the present numerical approaches. An example of these applications are polymer and semiconductor ring lasers, (de)multiplexing systems, and polarization converters based on bent waveguides. They will require more accurate and novel numerical approaches to solve more complex problems at smaller radii. Important issues are characteristics such as: the modal spectra, total loss and loss rates, and modal field distributions.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/282158 |
Date | January 1996 |
Creators | Rivera, Michael, 1968- |
Contributors | Burke, James J. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Dissertation-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0017 seconds