Return to search

The Physics of Nanoaperture Optical Traps: Design, Fabrication and Experimentation

Recent progress in nano optics, spurred by progress in nanofabrication, has allowed us to overcome these challenges. We use surface plasmon polaritons to break the optical diffraction limit and squeeze the photon energy into a local hot spot. The small mode volume of a plasmonic antenna or nanoaperature significantly enhances the local field and can be designed to resonate at a desired wavelength. By designing, fabricating, and testing these nanoapertures, I trap single nanoparticles with significantly reduced laser power by measuring the monochromatic transmission change of a resonant aperture. A freely diffused nanoparticle, behaving like a dipole antenna, interacts with the nanoaperture when trapped and shifts the resonance of the nanoaperture. By only monitoring a single wavelength, the presence of the particle changes the transmission signal. The effect of particle-induced transmission spectrum shift is called the self-induced back-action effect. This particle-induced spectrum change increases the transmission amplitude and variance once trapped. Furthermore, the monochromatic transmission measurement is a faster detection method than the spectrum measurement. It is able to follow up the diffusion, folding or conformation change of the trapped particle.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-1968
Date01 May 2021
CreatorsZhang, Chenyi
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.0016 seconds