Return to search

Hybrid Integrated Photonic Platforms and Devices

Integrated photonics has the potential to revolutionize optical systems by achieving drastic reductions in their size, weight and power. Remote spectroscopy, free-space communications and high-speed telecommunications are critical applications that would benefit directly from these advancements. However, many such applications require extremely wide spectral bandwidths, leading to significant challenges in their integration. The choice of integrated platform influences the optical transparency and functionality which can be ultimately achieved. In this work, several new platforms and technologies have been developed to meet these needs. First, the silicon-on-lithium-niobate (SiLN) platform is discussed, on which the first compact, integrated electro-optic modulator in the mid-infrared has been demonstrated. Next, results are shown in the development of the all-silicon-optical-platform (ASOP), an ultra-stable suspended membrane approach which offers broad optical transparency from 1.2 to 8.5 um and enables efficient nonlinear frequency conversion in the mid-IR. This fabrication approach is then taken further with "anchored-membrane waveguides," (T-Guides) enabling single-mode and single-polarization waveguiding over a span exceeding 1.27 octaves. Afterward, a new photonic technology enabling integrated polarization beam-splitters and polarizers over unprecedented bandwidths is introduced, called topographically anisotropic photonics (TAP). Next, results on high-performance microphotonic chalcogenide glass waveguides are presented. Finally, several integrated photonics concepts suitable for further work will be discussed, such as augmentations to T-Guides and a novel technique for quasi-phase-matching.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-6275
Date01 January 2016
CreatorsChiles, Jeffrey
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0021 seconds