Return to search

Trajectory Optimization of a Small Airship

Pseudo-spectral optimal solvers are used to optimize numerically a performance index of a dynamical system with differential constraints. Although these solvers are commonly used for space vehicles and space launchers for trajectory optimization, few experimental papers exist on optimal control of small airships. The objective of this thesis is to evaluate the use of a pseudo-spectral optimal control solver for generating dynamically constrained, minimal time trajectories. A dynamical model of a small airship is presented, with its experimental virtual mass, drag and motor experimentally modeled. The problems are solved in PSOPT, a pseudo-spectral optimal control code. Experimental tests with a small scale model are performed to evaluate the generated paths. Although drift occurs, as a consequence of an open loop control, the vehicle is capable of following the path. This results of this thesis may find uses in verifying how close to optimal discreet path planners are, to plan complex trajectories on short distances, or to generate dynamic maneuverer such as take-off or landing. Ultimately, improving path planning of small airships will improve their safety, maneuverability and flight-time, which makes them fit for scientific monitoring, for search and rescue, or as mobile telecommunications platforms.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/33166
Date January 2015
CreatorsBlouin, Charles
ContributorsLanteigne, Eric, Gueaieb, Wail
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.011 seconds