Return to search

Multiple satellite trajectory optimization

Approved for public release, distribution is unlimited / problem, with engine thrust as the only possible perturbation. The optimal control problems are solved using the general purpose dynamic optimization software, DIDO. The dynamical model together with the fuel optimal control problem is validated by simulating several well known orbit transfers. By replicating the single satellite model, this thesis shows that a multi-satellite model which optimizes all vehicles concurrently can be easily built. The specific scenario under study involves the injection of multiple satellites from a common launch vehicle; however, the methods and model are applicable to spacecraft formation problems as well. / Major, United States Air Force

Identiferoai:union.ndltd.org:nps.edu/oai:calhoun.nps.edu:10945/1255
Date12 1900
CreatorsMendy, Paul B., Jr.
ContributorsRoss, I. Michael, Danielson, D. A., Naval Postgraduate School (U.S.), Department of Mechanical and Astronautical Engineering
PublisherMonterey California. Naval Postgraduate School
Source SetsNaval Postgraduate School
Detected LanguageEnglish
TypeThesis
Formatxiv, 95 p.: col. ill., application/pdf
RightsThis publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. As such, it is in the public domain, and under the provisions of Title 17, United States Code, Section 105, may not be copyrighted.

Page generated in 0.0015 seconds