Return to search

Optimal Control of Partial Differential Equations in Optimal Design

This thesis concerns the approximation of optimally controlled partial differential equations for inverse problems in optimal design. Important examples of such problems are optimal material design and parameter reconstruction. In optimal material design the goal is to construct a material that meets some optimality criterion, e.g. to design a beam, with fixed weight, that is as stiff as possible. Parameter reconstrucion concerns, for example, the problem to find the interior structure of a material from surface displacement measurements resulting from applied external forces. Optimal control problems, particularly for partial differential equations, are often ill-posed and need to be regularized to obtain good approximations. We here use the theory of the corresponding Hamilton-Jacobi-Bellman equations to construct regularizations and derive error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method where the first, analytical, step is to regularize the Hamiltonian. Next its Hamiltonian system is computed efficiently with the Newton method using a sparse Jacobian. An error estimate for the difference between exact and approximate objective functions is derived, depending only on the difference of the Hamiltonian and its finite dimensional regularization along the solution path and its L² projection, i.e. not on the difference of the exact and approximate solutions to the Hamiltonian systems. Another treated issue is the relevance of input data for parameter reconstruction problems, where the goal is to determine a spacially distributed coefficient of a partial differential equation from partial observations of the solution. It is here shown that the choice of input data, that generates the partial observations, affects the reconstruction, and that it is possible to formulate meaningful optimality criteria for the input data that enhances the quality of the reconstructed coefficient. In the thesis we present solutions to various applications in optimal material design and reconstruction. / Denna avhandling handlar om approximation av optimalt styrda partiella differentialekvationer för inversa problem inom optimal design. Viktiga exempel på sådana problem är optimal materialdesign och parameterskattning. Inom materialdesign är målet att konstruera ett material som uppfyller vissa optimalitetsvillkor, t.ex. att konstruera en så styv balk som möjligt under en given vikt, medan ett exempel på parameterskattning är att hitta den inre strukturen hos ett material genom att applicera ytkrafter och mäta de resulterande förskjutningarna. Problem inom optimal styrning, speciellt för styrning av partiella differentialekvationer,är ofta illa ställa och måste regulariseras för att kunna lösas numeriskt. Teorin för Hamilton-Jacobi-Bellmans ekvationer används här för att konstruera regulariseringar och ge feluppskattningar till problem inom optimaldesign. Den konstruerade Pontryaginmetoden är en enkel och generell metod där det första analytiska steget är att regularisera Hamiltonianen. I nästa steg löses det Hamiltonska systemet effektivt med Newtons metod och en gles Jacobian. Vi härleder även en feluppskattning för skillnaden mellan den exakta och den approximerade målfunktionen. Denna uppskattning beror endast på skillnaden mellan den sanna och den regulariserade, ändligt dimensionella, Hamiltonianen, båda utvärderade längst lösningsbanan och dessL²-projektion. Felet beror alltså ej på skillnaden mellan den exakta och denapproximativa lösningen till det Hamiltonska systemet. Ett annat fall som behandlas är frågan hur indata ska väljas för parameterskattningsproblem. För sådana problem är målet vanligen att bestämma en rumsligt beroende koefficient till en partiell differentialekvation, givet ofullständiga mätningar av lösningen. Här visas att valet av indata, som genererarde ofullständiga mätningarna, påverkar parameterskattningen, och att det är möjligt att formulera meningsfulla optimalitetsvillkor för indata som ökar kvaliteten på parameterskattningen. I avhandlingen presenteras lösningar för diverse tillämpningar inom optimal materialdesign och parameterskattning. / QC 20100712

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-9293
Date January 2008
CreatorsCarlsson, Jesper
PublisherKTH, Numerisk Analys och Datalogi, NADA, Stockholm : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-CSC-A, 1653-5723 ; 2008:15

Page generated in 0.0021 seconds