Return to search

Next generation of optimization and interactive planning algorithms for brachytherapy treatments

Titre de l'écran-titre (visionné le 12 janvier 2024) / La curiethérapie est une modalité de traitement du cancer utilisant le rayonnement ionisant d'une source radioactive. En curiethérapie à haut débit de dose (HDR), un appareil motorisé blindé est utilisé pour guider la source radioactive à proximité ou à l'intérieur de la tumeur par l'intermédiaire d'applicateurs intracavitaires (IC) et/ou de cathéters interstitiels (IS). En s'arrêtant un certain temps (temps d'arrêt) à des positions spécifiques (positions d'arrêt), une dose de rayonnement conforme peut être adminisitrée à la tumeur tout en épargnant les organes à risque (OARs) avoisinants. Cependant, en raison de la nature du rayonnement ionisant, il est impossible d'administrer une dose de radiation curative à la tumeur sans exposer les OARs. Ces objectifs contradictoires doivent donc être optimisés simultanément. Par conséquent, le problème de planification de traitement en curiethérapie est intrinsèquement un problème d'optimisation multicritère (MCO), où de nombreuses solutions optimales (solutions Pareto-optimales) caractérisent les compromis cliniquement importants. Actuellement, les algorithmes commerciaux de planification en curiethérapie sont limités à l'ajustement manuel d'un objectif et/ou des temps d'arrêt. À cet égard, les algorithmes de planification inverse ne peuvent générer qu'un seul plan de traitement par cycle d'optimisation (en quelques secondes de temps de calcul) sans garantie de rencontrer les critères cliniques lors du premier cycle. Cette approche peut rendre la tâche de planification itérative et fastidieuse pour les planificateurs/planificatrices. Par conséquent, la qualité du plan peut dépendre des compétences de l'utilisateur/utilisatrice. En outre, la génération itérative d'un plan de traitement par cycle d'optimisation, comme c'est le cas en clinique, ne permet pas au planificateur/ planificatrice d'explorer facilement les compromis entre le tumeur cible et les OARs. La littérature présente également une lacune importante en ce qui concerne les méthodes d'optimisation permettant d'intégrer efficacement les applicateurs IC/IS complexes récents (par exemple, l'applicateur Venezia fabriqué par Elekta, Veenendaal, Pays-Bas) pour la curiethérapie du cancer du col de l'utérus. Le principal défi pour ces applicateurs complexes est de déterminer automatiquement le nombre optimal de cathéters, leur position et leur profondeur compte tenu du grand nombre de degrés de liberté dans le problème d'optimisation et des grandes variations dans la forme des tumeurs. Pour résoudre ces problèmes, cette thèse propose une nouvelle génération d'algorithmes d'optimisation et de planification interactive pour la curiethérapie. Pour atteindre cet objectif, un algorithme MCO (gMCO) basé sur une unité de processeur graphique (GPU) est d'abord mis en œuvre et comparé à un algorithme de planification inverse standard utilisé en clinique. gMCO met en œuvre un nouveau schéma d'optimisation des plans en parallèle sur l'architecture GPU permettant d'optimiser des milliers de plans Pareto-optimaux en quelques secondes. Ensuite, pour tirer pleinement profit de MCO en clinique, une interface graphique interactive appelée gMCO-GUI est développée. Cette interface permet au planificateur/planificatrice de naviguer et d'explorer les compromis en temps réel à partir des plans Pareto-optimaux générés par gMCO. gMCO-GUI permet entre autre d'afficher les indices dose-volume histogram (DVH), les courbes DVH et les lignes d'isodose pendant la navigation. Pour intégrer le flux de travail MCO dans la clinique, la mise en service de gMCO et de gMCO-GUI est effectuée en comparaison avec Oncentra Prostate et Oncentra Brachy, deux systèmes de planification de traitement largement utilisés. Suite à la mise en service, afin de caractériser l'utilisation de la planification interactive MCO en clinique, une étude inter-observateurs est menée. Deux physiciens/physiciennes expérimentés sont invités à replanifier 20 cas de cancer de la prostate chacun à l'aide de la planification interactive MCO. La qualité des plans préférés (obtenus par navigation) est comparée entre les deux physiciens/ phyciennes et le temps de planification MCO est enregistré. De plus, trois radio-oncologues sont invités à comparer l'aveugle les plans MCO (générés par les physiciens/physiciennes) et les plans cliniques afin d'établir le meilleur plan pour chaque patient. Finalement, motivé par le manque d'algorithmes d'optimisation des cathéters et de la dose dans le traitement du cancer du col de l'utérus dans les logiciels commerciaux et dans la littérature, un nouvel algorithme d'optimisation multicritère des cathéters pour les applicateurs IC/IS complexes tels que l'applicateur Venezia est conçu. Le problème d'optimisation avec l'applicateur Venezia est difficile car les composants de l'applicateur ne sont pas coplanaires. Le gain dosimétrique de l'optimisation simultanée des cathéters et MCO est comparé à MCO seul (cathéters cliniques) et aux plans cliniques basé sur les critères EMBRACE-II. En résumé, une nouvelle génération d'algorithmes d'optimisation et de planification interactive est développée pour la curiethérapie. Les cinq chapitres principaux de cette thèse rapportent les résultats et les contributions scientifiques de ces algorithmes comparés à la planification clinique standard. La thèse guide également les utilisateurs/utilisatrices dans l'intégration du flux de travail MCO interactif dans la clinique. / Brachytherapy is a treatment modality for cancer using ionizing radiation of a radioactive source. In high-dose-rate (HDR) brachytherapy, an afterloading unit is used to guide the radioactive source near or inside the tumor via intracavity (IC) applicators and/or interstitial (IS) catheters. By stopping a specific amount of time (dwell time) at specific positions (dwell positions), a conformal radiation dose can be delivered to the tumor while spearing nearby organs at risk (OARs). However, because of the nature of ionizing radiation, it is in fact impossible to deliver the curative dose to the tumor without exposing OARs. Instead, those conflicting objectives need to be simultaneously optimized. Therefore, the planning problem in HBR is inherently a multi-criteria optimization (MCO) problem, where many optimal solutions (Pareto-optimal solutions) can effectively characterize the clinically relevant trade-offs. Current commercial planning algorithms in HDR brachytherapy are limited to the manual fine-tuning of an objective and/or dwell times. In that regard, inverse planning algorithms can generate only one treatment plan per optimization run (few seconds of optimization time) without guarantee of meeting clinical goals in the first run, which makes the planning task iterative and cumbersome for the planners. Therefore, the plan quality may be dependent on the user skills. Furthermore, iterative generation of one treatment plan per optimization run as done in the clinic does not easily allow the planner to explore the trade-offs between targets and OARs. There is also an important gap in optimization methods in the literature to efficiently incorporate recent complex IC/IS applicators (e.g., the Venezia applicator manufactured by Elekta, Veenendaal, The Netherlands) for cervical cancer brachytherapy. The main challenge for these complex applicators is to automatically determine the optimal IS catheter number, position, and depth given large number of degrees of freedom in the optimization problem and large variations in tumor shapes. To address these problems, this thesis proposes next generation of optimization and interactive planning algorithms for brachytherapy. A graphics processing unit (GPU)-based MCO algorithm (gMCO) is first implemented and compared with a standard inverse planning algorithm used in the clinic. gMCO implements a novel parallel plan optimization scheme on GPU architecture that can optimize thousands of Pareto-optimal plans within seconds. Next, to fully benefit of MCO in the clinic, an interactive graphical user interface called gMCO-GUI is developed to allow the planner to navigate and explore the trade-offs in real-time through gMCO-generated plans. gMCO-GUI enables the display of dose-volume histogram (DVH) indices, DVH curves, and isodose lines during the plan navigation. To incorporate the proposed MCO workflow the clinic, the commissioning of gMCO and gMCO-GUI is conducted against Oncentra Prostate and Oncentra Brachy, two widely used treatment planning systems. Following the commissioning, and to further characterize the utilization of MCO interactive planning in the clinic, an inter-observer study is conducted. Two experienced physicists are asked to re-plan 20 prostate cases each using MCO interactive planning. The quality of the preferred plans (obtained by plan navigation) is compared between the two physicists and the MCO planning time is recorded. In addition, three radiation oncologists are invited to blindly compare MCO plans (generated by physicists) and clinical plans to assess the best plan for each patient. Finally, motivated by the lack of catheter and dose optimization algorithms in the treatment of cervical cancer in commercial software and in the literature, a novel simultaneous catheter optimization and MCO algorithm for complex IC/IS applicators such as the Venezia applicator is designed. The optimization problem with the Venezia applicator is challenging because the applicator components are non coplanar. The dosimetric gain of simultaneous catheter optimization and MCO is compared with MCO alone (clinical catheters), and clinical plans following EMBRACE-II criteria. In summary, next generation of optimization and interactive planning algorithms are developed for brachytherapy. The five main chapters of this thesis report the findings and scientific contributions of these algorithms compared with standard clinical planning. The thesis also guide users in the integration of the proposed interactive MCO workflow in the clinic.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/133124
Date19 January 2024
CreatorsBélanger, Cédric
ContributorsBeaulieu, Luc
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxvii, 197 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0027 seconds