Return to search

Cognitive radio systems in LTE networks

The most important fact in the mobile industry at the moment is that demand for wireless services will continue to expand in the coming years. Therefore, it is vital to find more spectrums through cognitive radios for the growing numbers of services and users. However, the spectrum reallocations, enhanced receivers, shared use, or secondary markets-will not likely, by themselves or in combination, meet the real exponential increases in demand for wireless resources. Network operators will also need to re-examine network architecture, and consider integrating the fibre and wireless networks to address this issue. This thesis involves driving fibre deeper into cognitive networks, deploying microcells connected through fibre infrastructure to the backbone LTE networks, and developing the algorithms for diverting calls between the wireless and fibre systems, introducing new coexistence models, and mobility management. This research addresses the network deployment scenarios to a microcell-aided cognitive network, specifically slicing the spectrum spatially and providing reliable coverage at either tier. The goal of this research is to propose new method of decentralized-to-distributed management techniques that overcomes the spectrum unavailability barrier overhead in ongoing and future deployments of multi-tiered cognitive network architectures. Such adjustments will propose new opportunities in cognitive radio-to-fibre systematic investment strategies. Specific contributions include: 1) Identifying the radio access technologies and radio over fibre solution for cognitive network infrastructure to increase the uplink capacity analysis in two-tier networks. 2) Coexistence of macro and microcells are studied to propose a roadmap for optimising the deployment of cognitive microcells inside LTE macrocells in the case of considering radio over fibre access systems. 3) New method for roaming mobiles moving between microcells and macrocell coverage areas is proposed for managing spectrum handover, operator database, authentication and accounting by introducing the channel assigning agent entity. The ultimate goal is to reduce unnecessary channel adaptations.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:669128
Date January 2012
CreatorsAl-Dulaimi, Anwer
ContributorsCosmas, J.
PublisherBrunel University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://bura.brunel.ac.uk/handle/2438/11544

Page generated in 0.0026 seconds