La microfluidique est un domaine très vaste qui étudie les comportements de fluides à l'échelle micrométrique. Grâce aux progrès de la microfabrication, elle suscite un nombre croissant d'applications en biologie ou chimie, et même très récemment en optique. En effet, son utilisation pour réaliser des cristaux photoniques est attractive par rapport aux technologies standards : elle permet une fabrication collective avec des interfaces très lisses. Dans cette perspective, cette thèse propose d'utiliser la microfluidique diphasique pour la fabrication de réseaux stables de microbulles, et pour intégrer de façon simple des fonctionnalités optiques réelles. Nous présentons d'abord la formation de réseaux hexagonaux de microbulles monodisperses de période dans la gamme 5-100 µm, contrôlée par la géométrie et les conditions d'écoulement. La qualité de ces cristaux a été révélée par imagerie de diffraction. Un photopolymère, utilisé comme liquide porteur, a permis l'obtention de structures stables sur plusieurs mois. Nous avons développé une technologie verre-verre qui permet la fabrication de canaux adaptés aux applications optiques : transparents, rigides et chimiquement résistants. Pour démontrer les potentialités de nos systèmes, nous avons réalisé des cristaux de bulles incluant des défauts contrôlés (lacune d'une bulle ou d'une ligne de bulles), éléments clés pour la conception de guides d'ondes ou de résonateurs. Nous utilisons des plots qui excluent les bulles de zones choisies, par compétition entre tension interfaciale et forces hydrodynamiques. Nous avons développé et validé expérimentalement un modèle qui prédit l'efficacité de cette méthode. La génération des microbulles sur puce est prometteuse pour la photonique : elle permet l'auto-organisation des structures avec une rugosité extrêmement faible. L'obtention de périodes comparables à la longueur d'onde est encore nécessaire pour la réalisation de fonctions basées sur les cristaux photoniques. Notre app roche doit permettre cette réduction de taille, car les limites de diffraction inhérentes à la photolithographie interviennent seulement pour la fabrication des canaux et non lors de la formation des bulles. Ce travail constitue donc une nouvelle approche, optofluidique, à la réalisation d'un guide d'onde, un filtre ou un résonateur optique.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00634454 |
Date | 30 September 2011 |
Creators | Allouch, Alaa |
Publisher | Université Paul Sabatier - Toulouse III |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds