Spider attachrnentdisc silk fibers are spun into a viscous liquid that rapidly solidifies, gluing dragline silk fibers to substrates for locomotion or web construction. Here we report the identification and artificial spinning of a novel attachment disc glue silk fibroin, Pyriform Spidroin 2 (PySp2), from the golden orb weaver Nephila c/avipes. MS studies support PySp2 is a constituent of the pyriform gland that is spun into attachment discs. Analysis of the PySp2 protein architecture reveals sequence divergence relative to the other silk family members, including the cob weaver glue silk fibroin PySpl. PySp2 contains internal block repeats that consist of two sub-repeat units: one dominated by Ser, Gin and Ala, the other Pro-rich. Artificial spinning of recombinant PySp2 truncations shows that the Ser-Gln-Ala-rich sub-repeat is sufficient for the assembly of polymeric subunits and subsequent fiber formation. These studies support that both orb- and cob-weaving spiders have evolved highly polar block-repeat sequence with the ability to self-assemble into fibers, suggesting a strategy to allow fiber fabrication in the liquid environment of the attachment discs.
Identifer | oai:union.ndltd.org:pacific.edu/oai:scholarlycommons.pacific.edu:uop_etds-1758 |
Date | 01 January 2010 |
Creators | Geurts, Paul |
Publisher | Scholarly Commons |
Source Sets | University of the Pacific |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of the Pacific Theses and Dissertations |
Page generated in 0.0021 seconds