Cette thèse est dédiée à l'étude théorique de phases exotiques dans un gaz dilué de bosons avec deux composantes (spins) en présence d'un couplage spin-orbite (SOC) entre ces deux états internes. En ajoutant ce dernier couplage à une description de type champs classiques de notre système, nous montrons que cette méthode permet de prédire le diagramme de phase à température finie de manière quantitative, efficace et fiable. Notre étude porte particulièrement sur un système de bosons bidimensionnels avec SOC dont nous dessinons le diagramme de phase en fonction de l'anisotropie du couplage spin-orbite ainsi que des interactions. Dans le cas d'un SOC anisotrope, une transition de phase de type Berenzinskii-Kosterlitz-Thouless sépare une phase dite normale d'une phase superfluide à plus basse température. L'ordre des spins du quasi-condensat dans la phase superfluide est alors guidé par les interactions de contact dépendantes du spin. Elles favorisent l'apparition soit d'un état onde plane avec moment non-nul (PW) soit d'une superposition linéaire de deux ondes planes appelée état de bande (SP). Pour des interactions indépendantes du spin des particules, nos simulations indiquent une fractionalisation du quasi-condensat. Les états PW et SP restent alors dégénérés. Dans le cas d'un SOC isotrope, nos calculs n'indiquent aucune transition de phase à la limite thermodynamique et à température finie. Un changement de comportement non critique subsiste pour un nombre important mais fini d'atomes. / In this thesis, we theoretically study the occurrence of exotic phases in a dilute two component (spin) Bose gas with artificial spin-orbit coupling (SOC) between the two internal states. Including spin-orbit coupling in classical field Monte Carlo calculations, we show that this method can be used for reliable, quantitative predictions of the finite temperature phase diagram. In particular, we have focused on SOCed bosons in two spatial dimensions and established the phase diagram for isotropic and anisotropic SOC and interparticle interactions. In the case of anisotropic SOC, the system undergoes a Berenzinskii-Kosterlitz-Thouless transition from a normal to a superfluid state at low temperature. The spin order of the quasicondensate in the low temperature superfluid phase is driven by the spin dependence of the interparticle interaction, favoring either the occurence of a single plane wave state at non-vanishing momentum (PW) or a linear sperposition of two plane waves with opposite momenta, called stripe phase (SP). For spin-independent interparticle interaction, our simulations indicate a fractionalized quasicondensate where PW and SP remain degenerate. For isotropic SOC, our calculations indicate that no true phase transition at finite temperature occurs in the thermodynamic limit, but a cross-over behavior remains visible for large, but finite number of atoms.
Identifer | oai:union.ndltd.org:theses.fr/2017GREAY073 |
Date | 20 October 2017 |
Creators | Kawasaki, Eiji |
Contributors | Grenoble Alpes, Holzmann, Markus |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds