Every year in the UK, tens of thousands of hospital patients suffer adverse events, such as un-planned transfers to Intensive Therapy Units or unexpected cardiac arrests. Studies have shown that in a large majority of cases, significant physiological abnormalities can be observed within the 24-hour period preceding such events. Such warning signs may go unnoticed, if they occur between observations by the nursing staff, or are simply not identified as such. Timely detection of these warning signs and appropriate escalation schemes have been shown to improve both patient outcomes and the use of hospital resources, most notably by reducing patients’ length of stay. Automated real-time early-warning systems appear to be cost-efficient answers to the need for continuous vital-sign monitoring. Traditionally, a limitation of such systems has been their sensitivity to noisy and artefactual measurements, resulting in false-alert rates that made them unusable in practice, or earned them the mistrust of clinical staff. Tarassenko et al. (2005) and Hann (2008) proposed a novelty detection approach to the problem of continuous vital-sign monitoring, which, in a clinical trial, was shown to yield clinically acceptable false alert rates. In this approach, an observation is compared to a data fusion model, and its “normality” assessed by comparing a chosen statistic to a pre-set threshold. The method, while informed by large amounts of training data, has a number of heuristic aspects. This thesis proposes a principled approach to multivariate novelty detection in stochastic time- series, where novelty scores have a probabilistic interpretation, and are explicitly linked to the starting assumptions made. Our approach stems from the observation that novelty detection using complex multivariate, multimodal generative models is generally an ill-defined problem when attempted in the data space. In situations where “novel” is equivalent to “improbable with respect to a probability distribution ”, formulating the problem in a univariate probability space allows us to use classical results of univariate statistical theory. Specifically, we propose a multivariate extension to extreme value theory and, more generally, order statistics, suitable for performing novelty detection in time-series generated from a multivariate, possibly multimodal model. All the methods introduced in this thesis are applied to a vital-sign monitoring problem and compared to the existing method of choice. We show that it is possible to outperform the existing method while retaining a probabilistic interpretation. In addition to their application to novelty detection for vital-sign monitoring, contributions in this thesis to existing extreme value theory and order statistics are also valid in the broader context of data-modelling, and may be useful for analysing data from other complex systems.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:669856 |
Date | January 2013 |
Creators | Hugueny, Samuel Y. |
Contributors | Tarassenko, Lionel ; Clifton, David A. |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:804a226c-a298-4764-9bc8-b191d2b852cd |
Page generated in 0.0018 seconds