Return to search

Análise de componentes independentes aplicada à separação de sinais de áudio. / Independent component analysis applied to separation of audio signals.

Este trabalho estuda o modelo de análise em componentes independentes (ICA) para misturas instantâneas, aplicado na separação de sinais de áudio. Três algoritmos de separação de misturas instantâneas são avaliados: FastICA, PP (Projection Pursuit) e PearsonICA; possuindo dois princípios básicos em comum: as fontes devem ser independentes estatisticamente e não-Gaussianas. Para analisar a capacidade de separação dos algoritmos foram realizados dois grupos de experimentos. No primeiro grupo foram geradas misturas instantâneas, sinteticamente, a partir de sinais de áudio pré-definidos. Além disso, foram geradas misturas instantâneas a partir de sinais com características específicas, também geradas sinteticamente, para avaliar o comportamento dos algoritmos em situações específicas. Para o segundo grupo foram geradas misturas convolutivas no laboratório de acústica do LPS. Foi proposto o algoritmo PP, baseado no método de Busca de Projeções comumente usado em sistemas de exploração e classificação, para separação de múltiplas fontes como alternativa ao modelo ICA. Embora o método PP proposto possa ser utilizado para separação de fontes, ele não pode ser considerado um método ICA e não é garantida a extração das fontes. Finalmente, os experimentos validam os algoritmos estudados. / This work studies Independent Component Analysis (ICA) for instantaneous mixtures, applied to audio signal (source) separation. Three instantaneous mixture separation algorithms are considered: FastICA, PP (Projection Pursuit) and PearsonICA, presenting two common basic principles: sources must be statistically independent and non-Gaussian. In order to analyze each algorithm separation capability, two groups of experiments were carried out. In the first group, instantaneous mixtures were generated synthetically from predefined audio signals. Moreover, instantaneous mixtures were generated from specific signal generated with special features, synthetically, enabling the behavior analysis of the algorithms. In the second group, convolutive mixtures were probed in the acoustics laboratory of LPS at EPUSP. The PP algorithm is proposed, based on the Projection Pursuit technique usually applied in exploratory and clustering environments, for separation of multiple sources as an alternative to conventional ICA. Although the PP algorithm proposed could be applied to separate sources, it couldnt be considered an ICA method, and source extraction is not guaranteed. Finally, experiments validate the studied algorithms.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-30052008-133011
Date19 March 2008
CreatorsFernando Alves de Lima Moreto
ContributorsMiguel Arjona Ramírez, Cinthia Itiki, Hani Camille Yehia
PublisherUniversidade de São Paulo, Engenharia Elétrica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0186 seconds