Return to search

DEVELOPMENT AND ANALYSIS OF ONBOARD TRANSLUNAR INJECTION TARGETING ALGORITHMS

Several targeting algorithms are developed and analyzed for possible future use onboard a spacecraft. Each targeter is designed to determine the appropriate propulsive burn for translunar injection to obtain desired orbital parameters upon arrival at the moon. Primary design objectives are to minimize the computational requirements for each algorithm but also to ensure reasonable accuracy, so that the algorithm’s errors do not force the craft to conduct large mid-course corrections. Several levels of accuracy for dynamical models are explored, the convergence range and speed of each algorithm are compared, and the possible benefits of the Broyden and trust-region targeters are evaluated. These targeters provide a proof of concept for the feasibility of a translunar injection targeting algorithm. Anticipating some future improvements, these algorithms could serve as a viable alternative to uploading ground-based targeting solutions and bypass the problems of delays and disruptions in communication, enabling the craft to conduct a translunar injection burn autonomously.

Identiferoai:union.ndltd.org:UTENN/oai:trace.tennessee.edu:utk_gradthes-1981
Date01 May 2011
CreatorsReed, Phillippe Lyles Winters
PublisherTrace: Tennessee Research and Creative Exchange
Source SetsUniversity of Tennessee Libraries
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses

Page generated in 0.0017 seconds