Return to search

Carrier transport properties in organic semiconductor films of metallophthalocyanine.

by Zhu, Ming. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 73). / Abstracts in English and Chinese. / ABSTRATE (ENGLISH) --- p.I / ABSTRATE (CHINESE) --- p.III / ACKNOWLEDGEMENTS --- p.V / TABLE OF CONTENTS --- p.VI / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Introduction to organic semiconductors --- p.1 / Chapter 1.2 --- Charge transport in organic semiconductors --- p.1 / Chapter 1.2.1 --- Polaron models --- p.2 / Chapter 1.2.2 --- Scher-Montroll model --- p.2 / Chapter 1.2.3 --- Gaussian disorder model --- p.3 / Chapter 1.3 --- Organic semiconductors in this thesis --- p.5 / Chapter 1.4 --- Several key issues --- p.6 / References --- p.7 / Chapter 2. --- Experimental Techniques --- p.9 / Chapter 2.1 --- Materials Purification --- p.9 / Chapter 2.1.1 --- Motivation --- p.9 / Chapter 2.1.2 --- Basic principle --- p.9 / Chapter 2.1.3 --- Purification setup --- p.10 / Chapter 2.1.4 --- Parameters optimization --- p.11 / Chapter 2.2 --- Sample Fabrication --- p.11 / Chapter 2.2.1 --- Substrate treatment --- p.12 / Chapter 2.2.2 --- Thermal vacuum evaporation --- p.12 / Chapter 2.2.3 --- Spin coating --- p.12 / Chapter 2.3 --- Electrical measurement techniques --- p.13 / Chapter 2.3.1 --- J-V characteristics --- p.13 / Chapter 2.3.1.1 --- Injection versus bulk limited current --- p.13 / Chapter 2.3.1.2 --- Space Charge Limited Current --- p.15 / Chapter 2.3.1.3 --- Trap controlled Space Charge Limited Current --- p.15 / Chapter 2.3.2 --- Admittance spectroscopy --- p.17 / References --- p.20 / Chapter 3. --- Steady state J-V characteristics of organic thin films in sandwiched structures --- p.22 / Chapter 3.1 --- Experimental --- p.22 / Chapter 3.2 --- Results and discussions --- p.23 / Chapter 3.2.1 --- J-V characteristics of CuPc and TPD-PS thin films --- p.23 / Chapter 3.2.2 --- J-V characteristics of CuPc thin films with different cathodes --- p.26 / Chapter 3.2.3 --- Variable temperature J-V characteristics of CuPc thin films --- p.28 / References --- p.31 / Chapter 4. --- Dynamic Properties of Organic Semiconductors Performed by Admittance Spectroscopy --- p.32 / Chapter 4.1 --- Introduction to admittance spectroscopy --- p.32 / Chapter 4.2 --- Theoretical models --- p.32 / Chapter 4.3 --- Experimental --- p.36 / Chapter 4.3.1 --- Experimental scheme --- p.36 / Chapter 4.3.2 --- Sample preparation --- p.36 / Chapter 4.4 --- Results and discussion --- p.37 / Chapter 4.4.1 --- Unpurified CuPc --- p.37 / Chapter 4.4.2 --- Purified CuPc --- p.40 / Chapter 4.5 --- Conclusion --- p.43 / References --- p.44 / Chapter 5. --- Air-induced Trap Effect in Organic Semiconductors --- p.45 / Chapter 5.1 --- Introduction to negative capacitance phenomenon --- p.45 / Chapter 5.2 --- Experimental --- p.46 / Chapter 5.3 --- Results and discussion --- p.46 / Chapter 5.3.1 --- Admittance spectroscopy with different electrodes --- p.46 / Chapter 5.3.2 --- Admittance spectroscopy with different concentrations of oxygen --- p.48 / Chapter 5.3.3 --- Admittance spectroscopy with different humidities --- p.50 / Chapter 5.4 --- Conclusion --- p.53 / References --- p.56 / Chapter 6. --- N-type Doping of Magnesium to Zinc-Phthalocyanine (ZnPc) --- p.58 / Chapter 6.1 --- Introduction --- p.58 / Chapter 6.2 --- Experimental --- p.60 / Chapter 6.3 --- Results and discussion --- p.61 / Chapter 6.4 --- Conclusion --- p.66 / References: --- p.67 / Chapter 7. --- Summary and future work --- p.68 / Summary --- p.68 / Future work --- p.69 / References: --- p.72 / Appendix --- p.73

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326478
Date January 2008
ContributorsZhu, Ming., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, viii, 73 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0024 seconds