Heutzutage werden riesige Datenmengen zwischen Endgeräten und Cloud-Servern verschoben. Cloud-Computing war nach Bloomberg bereits für 1% des weltweiten Stromverbrauchs im Jahr 2021 verantwortlich. Darüber hinaus kann die monopolartige Speicherung personenbezogener Daten schwerwiegende Auswirkungen auf die Gesellschaften unserer Welt haben. Um persönlichen Datenschutz und einen nachhaltigen Energieverbrauch zu gewährleisten, bedarf es einer Datenverarbeitung direkt am Endgerät; bezeichnet als Edge Computing. In diesem Zuge wird die Nachfrage nach individuell gestalteten Edge-Geräten rapide ansteigen. Der neu entstehende Markt bietet der organischen elektrochemischen Elektronik eine große Chance, vor allem für bioelektronische Anwendungen; allerdings muss die Chipintegration verbessert werden. In dieser Arbeit habe ich elektrochemische organische Elektronik für die Integration in Computersysteme untersucht. Insbesondere habe ich einen festen, photostrukturierbaren Elektrolyten entwickelt, der die Integration von OECTs ohne Kreuzkommunikation zwischen Bauteilen ermöglicht. Die OECTs arbeiten bei Spannungen unter 1V und schalten mit einem großen An/Aus-Verhältnis von 5 Größenordnungen und einer Unterschwellenschwingung nahe des thermodynamischen Minimums von 60mV/Dekade. Darüber hinaus wurden bei der Untersuchung der Hysterese des Bauelements drei verschiedene Hystereseregime identifiziert. Anschließend untersuchte ich die Schaltdynamik des OECTs und demonstrierte ein Top-Gate-OECT mit einer maximalen Betriebsfrequenz von 1 kHz. Beim Versuch, die komplexe Wechselwirkung zwischen Ionen und Elektronen in integrierten OECTs zu verstehen, habe ich einen grundlegenden elektrochemischen Mechanismus identifiziert. Die Abhängigkeit dieses Mechanismus’ von der Gate-Größe und der Drain-Überlapplänge wurde aufgezeigt und dieses Wissen zur Optimierung elektrochemischer Inverter genutzt. Zur Darstellung von OECT-basierten Schaltungskomponenten habe ich verschiedene Halbleiter verwendet und entsprechende Inverter hergestellt. Schließlich wurde die Hysterese eines einzigen ambipolaren Inverters zur Demonstration eines dynamischen Klinkenschalters genutzt. Im Rahmen dieser Arbeit habe ich die OECT-Technologie von den Anfängen bis hin zu integrierten Schaltkreiskomponenten entwickelt. Ich glaube, dass diese Arbeit ein Startschuss für Wissenschaftler und Ingenieure sein wird, um die OECT-Technologie in der realen Welt des Edge Computing einzusetzen. / Nowadays, vast amounts of data are shuttled between end-user devices and cloud servers. This cloud computing paradigm was, according to Bloomberg, already responsible for 1% of the world’s electricity usage in 2021. Moreover, the monopoly-like storage of personal data can have a severe impact on the world’s societies. To guarantee data privacy and sustainable energy consumption in future, data computation directly at the end-user site is mandatory. This computing paradigm is called edge computing. Owing to the vast amount of end-user-specific applications, the demand for individually designed edge devices will rapidly increase. In this newly approaching market, organic electrochemical electronics offer a great opportunity, especially for bioelectronic applications; however, the integration into low-power-consuming systems has to be improved. In this work, I investigated electrochemical organic electronics for their integration into computational systems. In particular, I developed a solid photopatternable electrolyte that allows integrating organic electrochemical transistors (OECTs) without cross-talk between adjacent devices. The OECTs operate at voltages below 1 V, and exhibit a large on/off ratio of 5 orders of magnitude and a subthreshold-swing close to the thermodynamic minimum of 60mV/dec. Moreover, investigating the device’s hysteresis, three distinct hysteresis regimes were identified; the RC-time-dominated regime I, the retention time governed regime II, and the time-independent stable regime III. I then examined the OECT’s switching dynamics and, subsequently, demonstrated a top-gate device with a maximum operating frequency of 1 kHz. Trying to understand the complex interaction between ions and electrons in integrated OECTs, I disclosed a fundamental electrochemical mechanism and named it the electrochemical electrode coupling (EEC). The EEC’s dependence on gate size and drain overlap length was rigorously shown, and this knowledge was used to optimize electrochemical inverters. Yet, to exemplify OECT-based circuit components, I employed various semiconductors and fabricated five inverters, each with its unique advantage. Finally, the ambipolar inverter’s hysteresis was used to demonstrate a single-device dynamic latch, a basic in-memory computational element. In this thesis, I developed the OECT technology from an infancy stage to integrated circuit components. I believe that this work will be a starting signal for scientists and engineers to bring the OECT technology into real-world edge computing.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:88393 |
Date | 30 November 2023 |
Creators | Weissbach, Anton |
Contributors | Eychmüller, Alexander, Leo, Karl, Thelakkat, Mukundan, Kleemann, Hans, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds