Return to search

Characterisation of an 84 kb linear plasmid that encodes DDE cometabolism in Terrabacter sp. strain DDE-1

DDT, an extremely widely used organochlorine pesticide, was banned in most developed countries more than 30 years ago. However, DDT residues, including 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE), still persist in the environment and have been identified as priority pollutants due to their toxicity and their ability to bioaccumulate and biomagnify in the food chain. In particular, DDE was long believed to be &quotenon-biodegradable&quote, however some microorganisms have now been isolated that are able to metabolise DDE in pure culture. Terrabacter sp. strain DDE-1 was enriched from a DDT-contaminated agricultural soil from the Canterbury plains and is able to metabolise DDE to 4-chlorobenzoic acid when induced with biphenyl. The primary objective of this study was to identify the gene(s) responsible for Terrabacter sp. strain DDE-1�s ability to metabolise DDE and, in particular, to investigate the hypothesis that DDE-1 degrades DDE cometabolically via a biphenyl degradation pathway. Catabolism of biphenyl by strain DDE-1 was demonstrated, and a biphenyl degradation (bph) gene cluster containing bphDA1A2A3A4BCST genes was identified. The bphDA1A2A3A4BC genes are predicted to encode a biphenyl degradation upper pathway for the degradation of biphenyl to benzoate and cis-2-hydroxypenta-2,4-dienoate and the bphST genes are predicted to encode a two-component signal transduction system involved in regulation of biphenyl catabolism. The bph gene cluster was found to be located on a linear plasmid, designated pBPH1. A plasmid-cured strain (MJ-2) was unable to catabolise both biphenyl and DDE, supporting the hypothesis that strain DDE-1 degrades DDE cometabolically via the biphenyl degradation pathway. Furthermore, preliminary evidence from DDE overlayer agar plate assays suggested that Pseudomonas aeruginosa carrying the strain DDE-1 bphA1A2A3A4BC genes is able to catabolise DDE when grown in the presence of biphenyl.
A second objective of this study was to characterise pBPH1. The complete 84,054-bp sequence of the plasmid was determined. Annotation of the DNA sequence data revealed seventy-six ORFs predicted to encode proteins, four pseudogenes, and ten gene fragments. Putative functions were assigned to forty-two of the ORF and pseudogenes. Besides biphenyl catabolism, the major functional classes of the predicted proteins were transposition, regulation, heavy metal transport/resistance, and plasmid maintenance and replication. It was shown that pBPH1 has the terminal structural features of an actinomycete invertron, including terminal proteins and terminal inverted repeats (TIRs). This is the first report detailing the nucleotide sequence and characterisation of a (linear) plasmid from the genus Terrabacter.

Identiferoai:union.ndltd.org:ADTP/217357
Date January 2006
CreatorsShirley, Matt, n/a
PublisherUniversity of Otago. Department of Microbiology & Immunology
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://policy01.otago.ac.nz/policies/FMPro?-db=policies.fm&-format=viewpolicy.html&-lay=viewpolicy&-sortfield=Title&Type=Academic&-recid=33025&-find), Copyright Matt Shirley

Page generated in 0.0017 seconds