Return to search

Elucidation of the aqueous equilibrium system of IrH₂(PMe₃)₃Cl and periodic trends of the iridium (III) dihydrido tris(trimethylphosphino) series, IrH₂(PMe₃)₃X

The complex, IrH₂(PMe₃)₃Cl (1), was previously found to be, not only unexpectedly water-soluble but also an effective homogeneous catatyst for the hydrogenation of unsaturates in water. The results of extensive ³¹P NMR studies on the aqueous system of (1) indicate that (1) is in equilibrium with the iridium(III) dihydrido “aquo” complex, [IrH₂(PMe₃)₃(H₂O)]⁺, and not the μ-chloro bridged complex, { [IrH₂(PMe₃)₃]₂Cl}⁺ (2), as previously reported. The calculated K<sub>eq</sub> value for the aqueous equilibrium is (0.0037 ± 0.0003) M. Thermodynamic data (ΔH = 30.8 kJ/mol, ΔS = 56.0 J/(Kmol), and ΔG = 14.1 kJ/mol) obtained from variable temperature ³¹P NMR studies are consistent with the proposed equilibrium system.

The complexes IrH₂(PMe₃)₃X (X = O₂CPh (3), I (4), and Br (6) were synthesized and examined. The complexes IrH₂(PMe₃)₃X (X = H₂O and F) could not be isolated. (3) was determined to dissociate completely in water to form the iridium(III) dihydrido “‘aquo” complex, [IrH₂(PMe₃)₃(H₂O)]⁺, seemingly explaining the greater catalytic activity of (3). Solubility of the halo complexes decreased from moderately soluble (1), to slightly soluble (6), to very slightly soluble (4). The solubilities of (4) and (6) were too low to allow quantification of their equilibria.

Finally it was observed that linear relationships exist between the electronegativity of the ligand, X, and the ¹H and ³¹P NMR chemical shifts of the hydrides and the phosphines for the complexes, IrH₂(PMe₃)₃X. These relationships are consistent with the findings of Birnbaum. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/38258
Date06 June 2008
CreatorsMatthews, Kelly E.
ContributorsChemistry, Merola, Joseph S., Brewer, Karen J., Dillard, John G., Glanville, James O., Hanson, Brian E.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation, Text
Formatix, 142 leaves, BTD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 31469000, LD5655.V856_1994.M387.pdf

Page generated in 0.0017 seconds