Return to search

Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications
such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been
limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and
without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single crystals will be discussed in Chapter 3 and 4.
Despite their outstanding charge transport characteristics, organolead halide perovskite single crystals grown by hitherto reported crystallization methods are not suitable for most optoelectronic devices due to their small aspect ratios and free standing growth. As the other major part of work of this dissertation, explorative work on growing organolead halide perovskite monocrystalline films and further their application in solar cells will be discussed in Chapter 5.

Identiferoai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/623284
Date04 1900
CreatorsPeng, Wei
ContributorsBakr, Osman, Physical Science and Engineering (PSE) Division, Mohammed, Omar F., Wu, Tao, Bisquert, Juan
Source SetsKing Abdullah University of Science and Technology
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
Rights2017-04-26, At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2017-04-26.

Page generated in 0.0096 seconds