Return to search

Ligand Effects in Gold(I) Acyclic Diaminocarbene Complexes and Their Influence on Regio- and Enantioselectivity of Homogeneous Gold(I) Catalysis

This dissertation focuses on the computational investigation of gold(I) acyclic diaminocarbene (ADC) complexes and their application in homogeneous gold(I) catalysis. Chapter 2 is an in-depth computational investigation of the σ- and π-bonding interactions that make up the gold-carbene bond. Due to the inherent conformation flexibility of ADC ligands, distortions of the carbene plane can arise that disrupt orbital overlap between the lone pairs on the adjacent nitrogen atoms and the empty p-orbital of the carbene. This study investigated the affect these distortions have on the strength of the σ- and π-bonding interactions. This investigation demonstrated that while these distortions can affect the σ- and π-bonding interactions, the ADC ligand have to become highly distorted before any significant change in energy of either the σ- or π-bonding interactions occurs. Chapter 3 is a collaborative investigation between experimental and computational methods, DFT calculations were employed to support the experimental catalytic results and determine the role that steric effects have in controlling the regioselectivity of a long-standing electronically controlled gold(I)-catalyzed tandem 1,6-enyne cyclization/hydroarylation reaction with indole. This study demonstrated that by sterically hindering nucleophilic attack of indole at the favored position, nucleophilic attack would occur at a secondary position leading to the selective formation of the electronically unfavored product. Chapter 4 is a collaborative investigation between experimental and computational methods. DFT calculations were employed to investigate and rationalize the importance of secondary non-covalent interactions and their influence on the enantioselectivity of a gold(I)-catalyzed intramolecular hydroamination of allene reaction. Through computational investigation of the enantiodetermining step, and the non-covalent interactions present between 2′-aryl substituent and the rest of the catalyst, it was determined that the presence of CF3 group on the 3,5-position of the 2′-aryl ring is crucial to maintaining a more rigid chiral pocket leading to higher enantiomeric excesses in this dynamic system. This increased rigidity is believed to be attributable to the several weak non-covalent interactions that arise between the allene substrate or diisopropyl N-substituent and the fluorine atoms of the CF3 groups.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1538722
Date08 1900
CreatorsEllison, Matthew Christopher
ContributorsSlaughter, LeGrande M., Cundari, Thomas, Richmond, Michael, Acree, William E. (William Eugene), Janesko, Benjamin
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatx, 92 pages, Text
RightsUse restricted to UNT Community, Ellison, Matthew Christopher, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0025 seconds