Return to search

Rigid NON-Donor Pincer Ligands in Organoactinide Chemistry

The coordination- and organometallic chemistry of uranium complexes bearing the non-carbocyclic ancillary ligand XA2 (4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) has been developed as a major focus of this thesis. A number of air-sensitive actinide chloro complexes and alkyl derivatives featuring reactive An–C bonds were prepared, and investigated using a variety of structural and spectroscopic analytical techniques, including X-ray diffraction, NMR spectroscopy, elemental analysis, and electrochemical methods. The research described in this thesis serves to expand the currently underdeveloped, fundamental chemistry of actinide complexes supported by non-carbocyclic (i.e. non-cyclopentadienyl) ligands. For example, the use of the prototypical xanthene-based ligand XA2 has led to neutral dialkyl uranium(IV) complexes which a) react with alkyl anions to yield anionic trialkyl ‘ate’ complexes, b) C–H activate neutral pyridines to yield organouranium(IV) species featuring cyclometalated pyridine-based ligands, and c) react with Lewis acids to yield rare examples of cationic monoalkyl uranium(IV) complexes featuring coordinated arene ligands. By altering the nature of the arene solvent/ligand, latent catalytic ethylene polymerization behaviour has also been unlocked in cationic XA2 uranium and thorium complexes, and this development may offer industrial relevance. Additionally, new NON-donor ligand designs featuring bulky terphenyl-based substituents (the "XAT" ligand) as well as 1-adamantyl groups (the "XAd" ligand) have been developed; a family of crystallographically-characterized dipotassium XAT complexes have been prepared which feature unprecedented potassium–alkane interactions, and the XAd ligand has been employed for the development of new organometallic thorium chemistry. The developments described in this thesis contribute to an emerging field and delineate new reactivities and structural motifs, providing important steps forward in organoactinide chemistry. / Thesis / Doctor of Philosophy (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/21960
Date January 2017
CreatorsAndreychuk, Nicholas R
ContributorsEmslie, David J H, Chemistry
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds