Return to search

Characteristics, distribution and timing of gold mineralisation in the Pine Creek Orogen, Northern Territory, Australia

Over the last two decades, gold occurrences in the Palaeoproterozoic Pine Creek Orogen (PCO) have been cited as type-examples of high-temperature contact-metamorphic or thermal-aureole deposits associated with granitoid magmatism. Furthermore, spatial relationships between these gold occurrences and the granitoids have led to inclusion of these deposits in the intrusion-related gold deposit group. Research on the characteristics, distribution and timing of these gold deposits tests these classifications and supports an alternative interpretation. The deposits display many similarities to well-described ‘turbidite-hosted’ orogenic gold deposits described from several Palaeozoic orogens. As in most ‘turbidite-hosted’ orogenic deposits, the gold mineralisation is dominantly epigenetic, sediment-hosted (typically greywacke and siltstone) and fold-controlled. Most gold is hosted by concordant or discordant veins, with limited alteration halos in host rocks, except where they occur in silicate-facies BIF or other Fe-rich rocks. The domal culminations of major doubly-plunging anticlines, and/or fold-limb thrust-faults, are important structural controls at the camp- and deposit-scales. Many deposits are sited in parts of the lithostratigraphy where there is significant competency and/or chemical contrast between units or sequences. In particular, the complex interdigitated stratigraphy of euxinic and transitional high-energy sedimentary rocks of the c.1900-1880Ma South Alligator Group is important for the localisation of gold deposits. The distribution of deposits is influenced further by the location and shape of granitoids and their associated contact-metamorphic aureole. Approximately 90% of gold deposits lie within the ∼2.5km wide contact-aureole, and most of these are concentrated in, and just beyond, the biotite-albite-epidote zone (0.5-1.0km from granitoid), with few deposits located in the inner hornblende-hornfels zone. At the deposit scale, gold is commonly associated with arsenopyrite-loellengite and pyrite, native-Bi and Bi-bearing minerals, and is confined to a variety of extensional quartz-sulphide ± carbonate veins. Such veins formed typically at 180-320°?C and ∼1kbar from low- to moderate salinity, two-phase aqueous fluids. Isotopic studies of the deposits are equivocal in terms of the source of hydrothermal fluid. Most δD and δ18O values fall within the range defined for contact-metamorphic and magmatic fluids, and sulphur isotopes indicate that the fluids are within the range of most regional sources. Significantly, lead isotope ratios show that the goldbearing fluid does not have a felsic magmatic-source signature, but instead suggest a homogenous regional-scale lead source. Excluding a few outliers, the relative uniformity of deposit characteristics, including host rocks, structural style, alteration, sulphide paragenesis and fluid P-T-X conditions, suggests that most deposits represent a continuum of broadly coeval mineralisation that formed under similar geological conditions

Identiferoai:union.ndltd.org:ADTP/221139
Date January 2005
CreatorsSener, A. K.
PublisherUniversity of Western Australia. Centre for Global Metallogeny, University of Western Australia. School of Earth and Geographical Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright A.K. Sener, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html

Page generated in 0.0021 seconds