Return to search

Gene Family Histories: Theory and Algorithms

Detailed gene family histories and reconciliations with species trees are a prerequisite for studying associations between genetic and phenotypic innovations. Even though the true evolutionary scenarios are usually unknown, they impose certain constraints on the mathematical structure of data obtained from simple yes/no questions in pairwise comparisons of gene sequences. Recent advances in this field have led to the development of methods for reconstructing (aspects of) the scenarios on the basis of such relation data, which can most naturally be represented by graphs on the set of considered genes.

We provide here novel characterizations of best match graphs (BMGs) which capture the notion of (reciprocal) best hits based on sequence similarities. BMGs provide the basis for the detection of orthologous genes (genes that diverged after a speciation event). There are two main sources of error in pipelines for orthology inference based on BMGs. Firstly, measurement errors in the estimation of best matches from sequence similarity in general lead to violations of the characteristic properties of BMGs. The second issue concerns the reconstruction of the orthology relation from a BMG. We show how to correct estimated BMG to mathematically valid ones and how much information about orthologs is contained in BMGs.

We then discuss implicit methods for horizontal gene transfer (HGT) inference that focus on pairs of genes that have diverged only after the divergence of the two species in which the genes reside. This situation defines the edge set of an undirected graph, the later-divergence-time (LDT) graph. We explore the mathematical structure of LDT graphs and show how much information about all HGT events is contained in such LDT graphs.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:76396
Date02 November 2021
CreatorsSchaller, David
ContributorsUniversität Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds