Mineralised shear zones in Otago are often truncated by regional low-angle faults, which juxtapose schist of different metamorphic grade. The Footwall Fault and the Hyde-Macraes Shear Zone are one example for this kind of tectonic setting, and are the subject to this study. Although, the mechanisms for the development of the mineralised thrust-origin shear zones are well studied, the relationship to the truncating faults is still poorly understood. Currently, the truncating low-angle faults are assumed to be related to crustal extension, starting in the early Cretaceous after the schist passed the ductile-brittle transition. This study presents new kinematic data for the Footwall Fault, suggesting development of normal sense movement under ductile conditions due to an abundant shear band cleavage in the footwall, which dynamically recrystallises quartz grains. However, brittle high-angle normal faults truncating these shear bands indicate either reactivation of normal sense movement after passing the ductile-brittle transition or continuous normal sense movement during the transition. Furthermore, this study presents a model, which suggests a regional scale rolling hinge development, consisting of an array of individual low-angle normal faults along the boundary of the textural zone change from TZ IV to TZIII, and strike-parallel high-angle faults at the NE margin of the Otago schist.
Identifer | oai:union.ndltd.org:ADTP/273807 |
Date | January 2007 |
Creators | Butz, Christoph Florian |
Publisher | University of Canterbury. Geological Sciences |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Christoph Florian Butz, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml |
Page generated in 0.002 seconds