Return to search

Zeta Function Regularization and its Relationship to Number Theory

While the "path integral" formulation of quantum mechanics is both highly intuitive and far reaching, the path integrals themselves often fail to converge in the usual sense. Richard Feynman developed regularization as a solution, such that regularized path integrals could be calculated and analyzed within a strictly physics context. Over the past 50 years, mathematicians and physicists have retroactively introduced schemes for achieving mathematical rigor in the study and application of regularized path integrals. One such scheme was introduced in 2007 by the mathematicians Klaus Kirsten and Paul Loya. In this thesis, we reproduce the Kirsten and Loya approach to zeta function regularization and explore more fully the relationship between operators in physics and classical zeta functions of mathematics. In so doing, we highlight intriguing connections to number theory that arise.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5409
Date01 May 2021
CreatorsWang, Stephen
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0019 seconds