New types of materials and products are developed every day, and subsequently, new types of wastes. At the same time, new regulations are put forth to protect human health and the ecosystems from the negative impacts of wastes. Often, the waste management industry is responsible to deal with these problems, and hence, good knowledge about wastes and their treatment is crucial. Waste is normally characterized in order to determine a treatment; however, this usually implies a known treatment method. This thesis aims to provide a structured approach about how to describe different treatments, and to provide guidance on how to characterize wastes in a solution oriented manner. A distinction is made between two types of treatments: those based on separation processes and those based on transformation processes, as well as combinations of the two. Separation processes are common in mechanical treatment such as sieving or air-classification. Transformation processes are common in such treatments as shredding, electroporation, radiation treatment, and stabilization. Most treatments consist of both a transformation and a separation process, such as incineration, in which the organic carbon is oxidized (transformed) into CO2,that then is separated from the remaining solids. Other examples of combined processes are composting and anaerobic digestion. A framework is presented that enables a quantitative description of different waste treatments such as anaerobic digestion and incineration in the same context. All transformation processes take place in an environment that can be described by environmental factors such as temperature, pH, redox, radiation etc. By relating different treatments or observations to each other in an n-dimension matrix, it is possible to not only locate the currently known treatments, but also to locate unexplored areas, i.e. combinations of environmental factors that could be used to treat wastes in new ways. The addition of the n-dimensional framework to the general characterization model, together with the “top down” strategy for characterization provide valuable insights useful for dealing with new types of wastes in an efficient manner.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-71570 |
Date | January 2019 |
Creators | Marklund, Erik |
Publisher | Luleå tekniska universitet, Geovetenskap och miljöteknik, Luleå |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf, application/pdf |
Rights | info:eu-repo/semantics/openAccess, info:eu-repo/semantics/openAccess |
Relation | Licentiate thesis / Luleå University of Technology, 1402-1757 |
Page generated in 0.0023 seconds