Return to search

Tópicos em métodos ótimos para otimização convexa / Topics in optimal methods for convex optimization

Neste trabalho apresentamos um novo método ótimo para otimização de uma função convexa diferenciável sujeita a restrições convexas. Nosso método é baseado em ideias de Nesterov e Auslender e Teboulle. A proposta dos últimos autores usa uma distância de Bregman coerciva para garantir que os iterados permaneçam no interior do conjunto viável. Nosso método estende esses resultados para permitir o emprego da distância Euclidiana ao quadrado. Mostramos também como estimar a constante de Lipschitz para o gradiente da função objetivo, o que resulta em uma melhora na eficiência numérica do método. Finalmente, apresentamos experimentos numéricos para validar nossa proposta e comparar com o algoritmo de Nesterov. / In this work we introduce a new optimal method for constrained differentiable convex optimization which is based on previous ideas by Nesterov and Auslender and Teboulle. The method proposed by the last authors use a coercive Bregman distance to ensure that the iterates remain in the interior of the feasible set. Our results extend this method to allow the use of the squared Euclidean distance. We also show how to estimate the Lipschitz constant of the gradient of the objective function, improving the numerical behavior of the method. Finally, we present numerical experiments to validate our approach and compare it to Nesterov\'s algorithm.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-27052012-220429
Date29 March 2012
CreatorsRossetto, Diane Rizzotto
ContributorsSilva, Paulo José da Silva e
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0019 seconds