Made available in DSpace on 2016-08-17T14:53:21Z (GMT). No. of bitstreams: 1
Sergio Augusto.pdf: 2350058 bytes, checksum: 7c3c67925b0b27a77105c3cb0799c4e6 (MD5)
Previous issue date: 2012-05-04 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / This work provides a framework to obtain the optimal bidding strategy for a GENCO in long-term electricity auction. The tool is based on intelligent techniques for optimizing the proposed Utility Function. The goal is to find the optimal strategy that maximizes the expected payoff of GENCO and simultaneously minimize the risks. The risks are modeled by two classical metrics: the Variance (Portfolio Theory) and Value at Risk (VaR). The proposed methodology is applied to auctions for long-term forward contracts, such that used in the Brazilian power system for buying and selling energy in the regulated market. The Bidding Strategy is formed through a Supply Curve which relates the optimal amount of energy to different offer prices. Thus, it allows the GENCO define the best bid (offer) for a given offer price. The proposed approach is validated for three test cases: First, concerning the variation of generation and price of energy scenarios for evaluation of the bidding strategy and the GENCOS risk perception; The second, consider a cascade hydro-term system for evaluation of MRE; and The third, considers the northeastern Brazilian subsystem where the supply curve is formed for the CHESF company's power plants portfolio. The results show how the offer may be changed according the variation of the spot prices and physical generation and demonstrate the efficacy of meta-heuristics proposed to optimize the supply model. / Este trabalho apresenta uma ferramenta de auxílio e suporte à tomada de decisões na formação de estratégias de oferta para agentes geradores (GENCOS) participantes de leilões de eletricidade de longo-prazo. A ferramenta é baseada em técnicas inteligentes para a otimização da Função de Utilidade proposta média-risco . O objetivo é encontrar a Estratégia Ótima que maximize o retorno esperado da GENCO e, simultaneamente, minimize os riscos relacionados às incertezas no montante de energia produzida e no preço spot, modelados por duas métricas clássicas de risco: a Variância (teoria dos portfólios) e o Valor em Risco (VaR). A abordagem proposta é aplicada ao mercado brasileiro de eletricidade, especificamente, ao ambiente de Leilões de Energia Existente na categoria Quantidade de Energia, tais quais os leilões aplicados pelo órgão regulador brasileiro para compra e venda de energia no mercado regulado. Sugere-se aqui a formação de uma Curva de Oferta que relacione a quantidade de energia ótima para diferentes preços de oferta. E, deste modo, permita a GENCO definir qual o melhor lance (oferta) para dado preço de oferta durante o processo do leilão. Para a avaliação da abordagem foram utilizados três casos testes: O primeiro considera cenários de geração física e preço de energia a fim de avaliar a estratégia de oferta e a percepção ao risco de contratação da GENCO quanto à variação de tais cenários; o segundo, considera um sistema em cascata onde é possível observar o efeito do Mecanismo de Realocação de Energia (MRE) sobre a oferta das GENCOS; e o terceiro considera o subsistema nordeste brasileiro onde a curva de oferta é formada para o portfólio de usinas pertencentes à empresa CHESF. Os resultados demonstram como a oferta de energia pode ser alterada de acordo com cenários de oferta gerados e comprovam a eficiência da meta-heurística proposta para otimização do modelo de oferta.
Identifer | oai:union.ndltd.org:IBICT/oai:tede2:tede/489 |
Date | 04 May 2012 |
Creators | Santos, Sergio Augusto Trovão |
Contributors | Méndez, Osvaldo Ronald Saavedra, Casas, Vicente Leonardo Paucar |
Publisher | Universidade Federal do Maranhão, PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET, UFMA, BR, Engenharia |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFMA, instname:Universidade Federal do Maranhão, instacron:UFMA |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds