Return to search

Tune-out Wavelength Measurement and Gyroscope Using Dispersion Compensation in an Atom Interferometer

This Dissertation describes how I used a three nanograting Mach-Zehnder atom beam interferometer to precisely measure a wavelength of light, known as a tune-out wavelength, that causes zero energy shift for an atom. I also describe how such measurements can be remarkably sensitive to rotation rates. It is well known that atom interferometry can be used to measure accelerations and rotations, but it was a surprise to find out that tune-out wavelength measurements can under certain conditions be used to report the absolute rotation rate of the laboratory with respect to an inertial frame of reference. I also describe how we created conditions which improve the accuracy of tune out wavelength measurements. These measurements are important because they serve as a benchmark test for atomic structure calculations of line strengths, oscillator strengths, and dipole matrix elements. I present a new measurement of the longest tune-out wavelength in potassium, λzero = 768.9701(4) nm. To reach sub-picometer precision, an optical cavity surrounding the atom beam paths of the interferometer was used. Although this improved the precision of our experiment by increasing the light-induced phase shifts, the cavity also brought several systematic errors to our attentions. For example, I found that large ±200 pm shifts in tune-out wavelengths can occur due to the Earth's rotation rate. To solve this problem, I demonstrated that controlling the optical polarization, the magnetic field, and the atom beam velocity distribution can either suppress or enhance these systematic shifts. Suppressing these systemic shifts in tune-out wavelengths is useful for precision measurements used to test atomic structure calculations. By enhancing these systematic shifts, the interferometer can be a gyroscope that utilizes tune-out wavelengths.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/625677
Date January 2017
CreatorsTrubko, Raisa, Trubko, Raisa
ContributorsCronin, Alexander D., Cronin, Alexander D., Anderson, Brian P., Sandhu, Arvinder
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0021 seconds