[Truncated abstract] Infectious and allergic diseases of the respiratory tract are major contributors to global mortality, morbidity and economic burden. Bacterial infections such as pneumonia and otitis media are important diseases, especially in children, while allergic diseases such as asthma and allergic rhinitis afflict up to 30% of the world's population. A confounding aspect of respiratory disease is the evidence of a complex relationship between respiratory allergy and respiratory infection, with infection suggested to both promote and prevent the pathogenesis of allergic disease. Additionally, allergy is a risk factor for bacterial infection such as otitis media, pneumonia and sinusitis, while respiratory infection can exacerbate allergic symptoms. Given the burden of bacterial respiratory disease and respiratory allergy, the development of preventative treatments for these diseases is needed and will benefit from clearer knowledge of the underlying immune mechanisms. This thesis aimed to to extend current knowledge by using Pasteurella pneumotropica, a similar bacteria to the human pathogen nontypeable Haemophilus influenzae (NTHi), to study respiratory infection and protective anti-outer membrane protein (OMP) immunity as well as the interaction of respiratory infection and allergic inflammation. Homologues of the important NTHi vaccine candidates P4, P6, P26 and D15 were found to be encoded by P. pneumotropica and a high level of amino acid sequence identity was noted between the different P. pneumotropica strains, as well as between other Pasteurellaceae members. ... In contrast, anti-P6his serum antibodies transferred to naïve mice did not confer protection. These results suggested that T-cellmediated mechanisms were involved in P6his-mediated protection, and showed that the P. pneumotropcia model was useful for elucidating protective mechansims. The interaction of P. pneumotropica infection and papain-induced allergy was studied to investigate immune mechanisms underlying respiratory infection and allergy. Mice with ongoing allergic inflammation were intranasally challenged with bacteria and exhibited reduced pulmonary bacterial numbers, prolonged eosinophilia in the lungs and the induction of Th2 cytokines in the BALF, compared to nonallergic, infected mice. This suggested a protective role for allergic inflammation in this model. The effect of papaininduced inflammation on mice colonised by P. pneumotropica was also examined and allergic inflammation appeared to worsen infection in colonised mice. This suggested that allergic inflammation may also have a role in promoting infection in this model. In conclusion, this thesis explored mechanisms involved in vaccine-mediated immunity and the interaction of respiratory infection and allergy using a P. pneumotropica infection in its natural host. It was shown that intranasally administered recombinant P6 and P4 protected mice from lung infection, which justifies the inclusion of these OMPs as NTHi vaccine candidates. Additionally, it was demonstrated that the interaction of allergy and respiratory infection modulated immune responses. Overall, these results emphasize that a clearer understanding of the complex mechanisms underlying these interactions is required, and may be aided by the development of suitable animal models.
Identifer | oai:union.ndltd.org:ADTP/290298 |
Date | January 2010 |
Creators | See, Sarah Bihui |
Publisher | University of Western Australia. School of Paediatrics and Child Health |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Sarah Bihui See, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.002 seconds