Return to search

Characterization of ovarian tumor-initiating cells and mechanisms of chemoresistance

Chemoresistance remains a major clinical obstacle to effective management of ovarian cancer. Cancer stem cells (or tumor-initiating cells, TICs) have been discovered recently, and have played a pivotal role in changing the view of cancer development; however, the molecular mechanisms by which these cells escape conventional therapies remain elusive. In this study, TICs were isolated from ovarian cancer cells as tumor spheres with specific stem properties under TIC-selective conditions. Unlike non-TICs, TICs strongly express stem cell factor (SCF) and c-Kit. Blocking SCF-c-Kit by SCF neutralizing antibodies, c-Kit small interfering RNA (siRNA) or imatinib (Gleevec), a clinical drug that inhibits c-Kit signaling, significantly inhibited TIC proliferation. Although cisplatin and paclitaxel killed the non-TICs, they did not eliminate TICs. Importantly, the combination of cisplatin/paclitaxel with c-Kit siRNA or imatinib inhibited the growth of both non-TICs and TICs. Similar results were obtained when patient-derived TICs were used. The findings also indicate that tumor-predisposing microenvironment, such as hypoxia, may promote ovarian TICs through upregulating c-Kit expression. Furthermore, I have showed that c-Kit expression induced activation of Phosphatidylinositol 3-kinases (PI3K)/Akt, -catenin, and ATP-binding cassette G2, which could be reversed by treatment with the PI3K/Akt inhibitor or -catenin siRNA. I further studied potential gene expression in TICs using cDNA and microRNA (miRNA) microarrays. The result from these microarrays provided a general profile in gene expression of TICs compared with the bulk tumor cells. In particular, let-7a, b, and c were shown to be downregulated in TICs compared to bulk tumor cells, suggesting that their loss may contribute to ovarian cancer development. Together, this study reveals a previously undescribed therapeutic effect of SCF-c-Kit signaling blockade to prevent ovarian cancer progression by eliminating TICs and the altered genes or miRNAs may represent possible molecular targets. / published_or_final_version / Biological Sciences / Master / Master of Philosophy

Identiferoai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/197834
Date January 2013
CreatorsChau, Wing-ka, 周穎嘉
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Source SetsHong Kong University Theses
LanguageEnglish
Detected LanguageEnglish
TypePG_Thesis
RightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works., Creative Commons: Attribution 3.0 Hong Kong License
RelationHKU Theses Online (HKUTO)

Page generated in 0.0019 seconds